Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course:PHYSICSProgram:B.Sc., LL.B. (Hons.) IPR/FHEL/MFLCourse Code:CLNL 1033

Semester: I Time: 03 hrs. Max. Marks: 100

Instructions:

S. No.		Marks	CO
Q 1	Under normal conditions a diode conducts current when it is		
	a. Avalanched		
	b. Forward biased	1	2
	c. Reverse biased	1	3
	d. Saturated		
Q 2	The resolving power of a microscope is highest amongst the following for		
	a. Blue light		
	b. Red light	1	1
	c. Violet light		
	d. Green light		
Q 3	The phenomenon of Interference in light proves		
	a. Wave nature of light		
	b. Longitudinal wave nature of light	1	1
	c. Transverse wave nature of light		
	d. Quantum nature of light		
Q 4	Two photons approach each other. Their relative velocity would be		
	a. 0		
	b. c/2	1	4
	c. 2c		
	d. c		
Q 5	A p – type semiconductor is		
	a. Negatively charged		
	b. Positively charged	1	3
	c. Electrically neutral		
	d. None of the above		
Q 6	Which process gives the laser its special properties as an optical source?		
-	a. Stimulated absorption		•
	b. Spontaneous emission	1	2
	c. Dispersion		

	d. Stimulated emission		
Q 7	Two light beams with intensities I1 and I2 superimpose to produce interference pattern. The contrast between the fringes is the best when a. I1 = I2/2 b. I1 = I2/4 c. I1 = I2/3 d. I1 = I2	1	1
Q 8	 A Nicol's prism is based on the action of a. Scattering of light b. Refraction of light c. Reflection of light d. Double refraction of light 	1	1
Q 9	A sphere when moved along at very high speed will look like a a. Rectangle b. Circle c. Sphere d. Ellipsoid	1	4
Q 10	When white light is incident on a diffraction grating, the light that is deviated most from the central image a. Blue b. Red c. Violet d. Yellow	1	1
0.11			
Q 11 Q 12	Give 3 differences between ordinary light and laser light.What is the effect on the fringe system obtained by a Young's double slit	4	2
	arrangement if the wavelength of the light used is reduced?	4	1
Q 13	Explain the concept of 'Mass Energy equivalence' in the Special Theory of Relativity.	4	4
Q 14	What is right circularly polarized light? [Hint: illustrating with diagram would help!]	4	1
Q 15	Differentiate between Intrinsic and Extrinsic semiconductors?	4	3
	SECTION-C		
Q 16	Mean life of a meson is $2 \ge 10^{-8}$ s. Calculate the mean life of the meson in its frame, moving with a velocity of 0.8 c.	5	4
Q 17	A pulsed laser deposits about 4.95×10^{19} eV of energy per pulse in a small spot. If the wavelength of radiation is 7000 Å, then calculate the number of photons emitted in every such laser pulse.	5	2
Q 18	Calculate the minimum number of lines in a grating, which would just resolve lines of wavelengths, 5000 Å and 5010 Å in the first order. [Hint: For simplification of calculations use λ =5000Å]	5	1
Q 19	Newton's rings are observed in reflected light of wavelength λ =6000Å. The diameter of the 10 th dark ring is 0.5 cm. Find the radius of curvature of the lens used and the thickness of the corresponding air film.	5	1

SECTION-D				
Q 20	Describe the formation of potential barrier at a P-N junction. Describe in detail the forward and reverse biasing of a P-N junction and the conditions therein. Give some uses of these biasing.	4+8+3	3	
Q 21	Discuss the phenomenon of double refraction in a calcite crystal. Describe the construction and working of a Nicol prism. Give some uses of polaroids.	5+12+3	1	
Q 22	What are the fundamental postulates of Special Theory of Relativity. Mention the velocity addition relation and show that it is consistent with Einstein's second postulate.	5+3+7	4	