Name: Enrolment No:				
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019				
Course: PHYSICS Program: B.Sc., LL.B. (Hons.) IPR/FHEL/MFL Course Code: CLNL 1033 Instructions:		Semester: I Time: 03 hrs. Max. Marks: 100		
S. No.			Marks	CO
Q 1	Under normal conditions a diode conduct a. Avalanched b. Forward biased c. Reverse biased d. Saturated		1	3
Q 2	The resolving power of a microscope is h a. Blue light b. Red light c. Violet light d. Green light	the following for	1	1
Q 3	The phenomenon of Interference in light a. Wave nature of light b. Longitudinal wave nature of light c. Transverse wave nature of light d. Quantum nature of light		1	1
Q 4	Two photons approach each other. Their a. $\quad 0$ b. $\mathrm{c} / 2$ c. 2 c d. c	y would be	1	4
Q 5	A p - type semiconductor is a. Negatively charged b. Positively charged c. Electrically neutral d. None of the above		1	3
Q 6	Which process gives the laser its special a. Stimulated absorption b. Spontaneous emission c. Dispersion	optical source?	1	2

	d. Stimulated emission		
Q 7	Two light beams with intensities I1 and I2 superimpose to produce interference pattern. The contrast between the fringes is the best when a. $\quad \mathrm{I} 1=\mathrm{I} 2 / 2$ b. $\quad \mathrm{I} 1=\mathrm{I} 2 / 4$ c. $\quad \mathrm{I} 1=\mathrm{I} 2 / 3$ d. $\quad \mathrm{I} 1=\mathrm{I} 2$	1	1
Q 8	A Nicol's prism is based on the action of a. Scattering of light b. Refraction of light c. Reflection of light d. Double refraction of light	1	1
Q 9	A sphere when moved along at very high speed will look like a a. Rectangle b. Circle c. Sphere d. Ellipsoid	1	4
Q 10	When white light is incident on a diffraction grating, the light that is deviated most from the central image a. Blue b. Red c. Violet d. Yellow	1	1
SECTION B			
Q 11	Give 3 differences between ordinary light and laser light.	4	2
Q 12	What is the effect on the fringe system obtained by a Young's double slit arrangement if the wavelength of the light used is reduced?	4	1
Q 13	Explain the concept of 'Mass Energy equivalence' in the Special Theory of Relativity.	4	4
Q 14	What is right circularly polarized light? [Hint: illustrating with diagram would help!]	4	1
Q 15	Differentiate between Intrinsic and Extrinsic semiconductors?	4	3
SECTION-C			
Q 16	Mean life of a meson is $2 \times 10^{-8} \mathrm{~s}$. Calculate the mean life of the meson in its frame, moving with a velocity of 0.8 c .	5	4
Q 17	A pulsed laser deposits about $4.95 \times 10^{19} \mathrm{eV}$ of energy per pulse in a small spot. If the wavelength of radiation is $7000 \AA$, then calculate the number of photons emitted in every such laser pulse.	5	2
Q 18	Calculate the minimum number of lines in a grating, which would just resolve lines of wavelengths, $5000 \AA$ and $5010 \AA$ in the first order. [Hint: For simplification of calculations use $\lambda=5000 \AA$]	5	1
Q 19	Newton's rings are observed in reflected light of wavelength $\lambda=6000 \AA$. The diameter of the $10^{\text {th }}$ dark ring is 0.5 cm . Find the radius of curvature of the lens used and the thickness of the corresponding air film.	5	1

SECTION-D			
Q 20	Describe the formation of potential barrier at a P-N junction. Describe in detail the forward and reverse biasing of a P-N junction and the conditions therein. Give some uses of these biasing.	$\mathbf{4 + 8 + \mathbf { 3 }}$	$\mathbf{3}$
Q 21	Discuss the phenomenon of double refraction in a calcite crystal. Describe the construction and working of a Nicol prism. Give some uses of polaroids.	$\mathbf{5 + 1 2 + 3}$	$\mathbf{1}$
Q 22	What are the fundamental postulates of Special Theory of Relativity. Mention the velocity addition relation and show that it is consistent with Einstein's second postulate.	$\mathbf{5 + 3 + 7}$	$\mathbf{4}$

