Name:

Enrolment No:

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Cellular & Mobile Data Communication Program: B Tech Electronics with spz BCT Course Code: ELEG428 Semester: VII Time 03 hrs. Max. Marks: 100

Instructions:

- Attempt all questions as per the instruction.
- Assume any data if required and indicate the same clearly.
- Unless otherwise indicated symbols and notations have their usual meanings.
- Strike off all unused blank pages

SECTION A				
S. No.		Marks	CO	
Q 1	Assume a 1 Amp-hour battery is used on a cellular telephone (often called a cellular subscriber unit). Also, assume that the cellular telephone draws 35 mA in idle mode and 250 mA during a call. How long would the phone work (i.e., what is the battery life) if the user leaves the phone on continually and has one 3-minute call every day? Every 6 hours?	5	CO1	
Q 2	What is need of frequency reuse? Show that for a hexagonal cell geometry, the co- channel reuse ratio is $\sqrt{3N}$, where $N = i^2 + ij + j^2$	5	CO2	
Q 3	Discuss near-far problem in cellular systems. Find the far-field distance for an antenna with maximum dimension of 1 m and operating frequency of 900 MHz.	5	CO3	
Q 4	What are different types channels used in GSM? Explain any one of them.	5	CO4	
	SECTION B			
Q 5	Draw the block diagram of a cellular system and explain step by step how a cellular telephone call is made.	10	CO1	
Q 6	What are the different techniques used for improving the cellular system capacity? Explain them. OR Explain co-channel interference and how affects the system capacity. Also derive the expression for signal to interference ratio for 7-cell reuse system.	10	CO2	
Q 7	Describe code division multiple access (CDMA). Why power control mechanism is required in CDMA based systems? Explain the mechanisms.	10	CO3	
Q 8	Describe the GSM architecture. Also mentions the services of GSM	10	CO4	

	SECTION-C					
Attempt any one from Q 9 and Q10						
Q 9	Q11 is compulsory(a) Suppose that a mobile is moving along a straight line from BS1 to BS2 with a speed of 60 km/hr. The distance between the base stations is 2 km. For simplicity, assume small scale fading is neglected and the received power (in dBm) at the mobile station from the BS is modeled as a function of distance. Assume that $P_0 = 0$ dBm, d_0 = 3 m, and n=4. The minimum usable signal level for acceptable voice quality is - 99dBm and $\Delta t = 2$ sec. Find the handoff threshold ($P_{r,HO}$) and power margin Δ in dBm.(b) If a transmitter produces 50 W of power, express the transmit power in units of (a) dBm, and (b) dBW. If 50 W is applied to a unity gain antenna with a 900 MHz carrier frequency, find the received power in dBm at a free space distance of 100m from the antenna. What is Pr(10 km)? Assume unity gain for the receiver antenna.	12+8	CO2			
Q 10	The power delay profile for a particular RF channel shown in Fig. 1 . $\begin{array}{c} P_{r}(\tau) \\ 0 \text{ dB} \\ -10 \text{ dB} \\ -20 \text{ dB} \\ -20 \text{ dB} \\ -30 d$	20	CO2			
Q 11	(a) For your unswer in (c), is the enamed dust of show fidning. (a) Calculate the capacity and spectral efficiency of a TDMA system using the following parameters: bandwidth efficiency factor $b = 0.9$, bit efficiency (with QPSK) $= 2$, voice activity factor $= v_f = 1.0$, one-way system bandwidth $BW = 12.5$ MHz, information bit rate $R = 16.2$ Kbps, and frequency reuse factor $N = 19$. (b) Determine the maximum throughput that can be achieved using ALOHA and slotted ALOHA protocols. (c) In a single-cell CDMA system using spatial division multiple access (SDMA), determine the number of simultaneous users that can be supported at an average probability of error of 10^{-3} when a processing gain of $R_c/R_b = 511$ is used. Assume 10 dB gain beam patterns may be formed and that perfect power control is used. Neglect voice activity. Given that the inverse Q-function value $Q^{-1}(10^{-3}) = 3.1$	7+5+8	CO3 CO4			