

	SECTION B (Marks-30)		
Q3	The damped natural frequency of a system as obtained from a free vibration test is 9.8 Hz . During the forced vibration test with constant exciting force on the same system, the maximum amplitude of vibration is found to be at 9.6 Hz . Find the damping factor of the system and its natural frequency.	10	CO 3
Q4	Derive the equation of motion (EOM) of the system given below.	10	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 3 \end{aligned}$
Q5	A boy riding a bicycle can be modeled as a spring-mass-damper system with an equivalent weight, stiffness, and damping constant of $900 \mathrm{~N}, 55,000 \mathrm{~N} / \mathrm{m}$, and 1,500 $\mathrm{N}-\mathrm{s} / \mathrm{m}$, respectively. The differential setting of the concrete blocks on the road caused the level surface to decrease suddenly, as indicated in Fig. If the speed of the bicycle is $20 \mathrm{~km} / \mathrm{hr}$, determine the displacement of the boy in the vertical direction. Assume that the bicycle is free of vertical vibration before encountering the step change in the vertical displacement.	10	$\begin{aligned} & \mathrm{CO} 4 \\ & \mathrm{CO} \end{aligned}$

	OR		
Q5	A compound pendulum with mass of rod Mr and mass of bob Mb is oscillating freely on its hinge. If the length of pendulum is L find its frequency of oscillation.	10	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{CO} \end{aligned}$
SECTION-C (Marks 40)			
Q6	Using Dunkerley's method find the fundamental natural frequency of the following system.	20	CO2
Q7	Find the natural frequency of the vibration of a tapered bar fixed at its base using Rayleigh-Ritz method as shown in figure. Take the width of the bar as unity.	20	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 4 \end{aligned}$
	OR		
Q7	An automobile is modeled with a capability of pitch and bounce motions, as shown in Fig. It travels on a rough road whose surface varies sinusoidally with an amplitude of 0.035 m and a wavelength of 7.5 m . Derive the equations of motion of the automobile for the following data: Radius of gyration $=1.2 \mathrm{~m}$ Velocity $=50 \mathrm{~km} / \mathrm{hr}$. Location of CG from front axle $=1015 \mathrm{~mm}$ Location of CG from rear axle $=1240 \mathrm{~mm}$	20	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 4 \end{aligned}$

