Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

SECTION A

Course: CAD/CAM	,
Program: B Tech (Mechanical and Mechanical with Spec	cialization)
Course Code: GNEG 363	

Semester: VII Time 03 hrs. Max. Marks: 100

Instructions:

		1	
S. No.		Marks	CO
Q 1	Write stages in product life cycle.	4	CO1
Q 2	Derive the relationship for geometric rotation in XY plane.	4	CO2
Q 3	Explain Constructive Solid Geometry concept of solid modeling.	4	CO3
Q 4	State the benefits and limitations of Group Technology.	4	CO5
Q 5	Explain flexible manufacturing system with diagram.	4	CO1
	SECTION B		
0.6			
Q 6	Why non-parametric representation of curves is less used compared to parametric representation in CAD?	10	CO3
Q 7	A line having end points $(3, 3)$ and $(5, 5)$ is reflected about a line Y = 3x. Find final	10	~~~
	position of the line.	10	CO2
Q 8	Write a short note on		
	(i) Cellular Manufacturing	10	CO4
0.0	(ii) Concurrent Engineering		
Q 9	Give the details of SLS rapid prototyping system. OR		
		10	CO4
	Why is rapid protyping used in modern manufacturing system? Explain briefly LOM rapid protyping system.		
	SECTION-C		
Q 10	Why Bezier splines are highly useful and convenient for curve and surface design?		
	Generate a Bezier curve with following control points	20	CO3
	(1, 2), (3, 4), (6, -6) and (10, 8).	20	005
Q 11	(i) Compare the methods used for forming cells in group technology? Briefly explain		
•	them with an example.	20	005
	(ii) Justify production flow analysis as the best method of forming part families.	20	CO5

				0	R							
Obtain the part fa Order Clustering				ence m	natrix g	given in	n the ta	able be	low us	sing Ra	nk	
Parts	1	2	3	4	5	6	7	8	9	10		
Machines												
A		1		1			1	1		1		
В		1		1					1	1		
С	1		1		1		1		1			
D				1		1		1	1	1		
E	1		1			1		1		1		
			1	<u> </u>	<u> </u>				<u> </u>			