Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Corrosion Science & Technology Program: B. Tech Mech Sp. Pro/Th/MD/MSNT Course Code: MTEG 471 Semester: VII Time 03 hrs. Max. Marks: 100

Instructions: 1. Use graph sheet wherever required.

2. Assume data if required and mention it clearly at the top of your answer.

S. No.			Marks	СО
1	i.	This form of corrosion occurs due to concentration difference in a component		
) Stress	
	ii.	When Pt and Co are electrically connected, which one gets corroded		
		(a)Pt (b) Co (c) None (d) Can't	decide	
	iii.	Which of the following can be used for cathodic protection		
		(a)Al (b) Cd (c) Cu (d) Either		
	iv.	Knife line attack is also known as		
		(a)Weld decay b. filiform corrosion c. Cavitation dama	ıge	
		d. None		
	v.	Type of corrosion in weld decay:		
		a. Intergranular b. Crevice c. Pitting d. any of the		
	vi.	Passivity is due to	10	CO1
	a.	Higher EMF b. Lower EMF c. Oxide film d.	All	
	vii.	Passivity is not reason for inertness of		
	a.	Au b. Al c. Ti d. Ni		
	viii.	When passivity is achieved measured current density becomes:		
	a.		None	
	ix.	During redox reaction at equilibrium net current becomes:		
			None	
	X.	Sensitization is formation of carbide:	ivone	
			All	
	a.	$\mathbf{N}\mathbf{D} = \mathbf{D} \cdot \mathbf{C}\mathbf{I} = \mathbf{C} \cdot \mathbf{C}\mathbf{D} = \mathbf{U}$	All	
2	Descri	be galvanizing.	5	CO1
3	Explai	n SHE with the help of a neat sketch.	5	CO1
	1	SECTION B (40 marks)	I	1

SECTION A (20 marks)

4	Determine whether silver will corrode with hydrogen evolution in deaerated KCN		
	solution, $pH = 9$, when CN^- activity = 1.0 and $Ag(CN)_2^-$ activity is 0.001.		
	OR	10	CO2
	Determine whether copper will corrode in deaerated CuSO ₄ , $pH = 0$, to form Cu ²⁺ (activity = 0.1) and H 2 (1 atm). What is the corrosion tendency in volts?		
5	nalyze the data given and answer the questions.		
	Steel plate with copper rivets and a copper plate with steel rivets, both are exposed to		
	sea water for 2 years.		
	$E^{0}_{Cu2+/Cu} = +0.340, E^{0}_{Fe2+/Fe} = -0.440$		CO3
	a) Which joint is much stronger with aspect of corrosion? Why?b) Discuss the form of corrosion associated with this problem.		
	c) Suggest one measure to reduce the rate of corrosion of the joint using same		
	materials.	2	
6	a) Discuss selective leaching with an example.		
	b) Suggest some preventive measures for it.	4	CO1
	c) Give one advantageous application of selective leaching.	2	
7	What is the volume (at room temperature) of hydrogen evolved on Pt and Ni electrodes		
	of 5cm x 5cm x 0.2cm immersed in an aqueous solution of pH 3, when held at -0.7V		
	(SHE) for one week? The exchange current density for H+/H on both the metals	10	CO2
	respectively are 7.94 x 10^{-4} A/cm ² and (b) 6.3 x 10^{-6} A/cm ² . Assume pH2 to be 0.5	ely are 7.94 x 10^{-4} A/cm ² and (b) 6.3 x 10^{-6} A/cm ² . Assume pH2 to be 0.5	
	atm. The Tafel slopes are $\beta a = 60 \text{ mV/decade}$ and $\beta c = 100 \text{ mV/decade}$.		
	SECTION-C (40 marks)		
8	A. Explain hot corrosion. List the properties that an oxide film should have in	10	
	order to be protective in high temperature conditions.		CO3
	B. Describe inhibitors. Explain passivating inhibitors along with its two types.		0.05
	Write one drawback of passivating inhibitors.	10	
9	Describe anodic polarization and derive the expression for it.		0.0.0
	OR Describe and desire the second desire the		CO3
	Describe concentration polarization and derive the expression for it.		