Name: **Enrolment No: UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019** Programme Name: B.Tech – Mechanical, ME- spz-MD and THE : VII Semester Course Name : Solar Thermal Technologies Time : 03 hrs Course Code : MHEG 456 Max. Marks: 100 Nos. of page(s) :04 Instructions: Assume the suitable data if required SECTION A S. No. Marks CO Explain a solar air heating system using different collector configurations along with Q1 5 **CO3** their advantages and disadvantages. Explain beam solar radiation and diffuse solar radiation. Q 2 5 **CO1** Q 3 Explain the following terms. (a) The latitude and longitude 5 **CO1** (b) The hour angles (c) sun declination angle Calculate the hour angle at sunrise and sunset on June 21 and December 21 for a **O**4 sunrise is located at an angle of 10° and facing due south. The surface is located in 5 **CO2** Mumbai (19°07'N, 72°51'E). **SECTION B** Q 5 A concentrating collector is located in Pune (18.53° N) and operates in tracking mode II on May 1st. Calculate the values of the slope of the aperture plane from 9:00 to 13:00 10 **CO2** h (solar time) at hourly intervals and the corresponding angle of incidence. Explain the different energy storage methods used in the solar thermal systems. Q 6 **CO4** 10 07 Explain flat plate and concentrating solar energy collectors. What is tracking of the 10 CO3 concentrator? Q 8 Calculate the length and direction of the shadow cast on the ground by a 1 m long vertical stick for the following situation Location : Bombay (19°07'N, 72°51') Date : February 13th : 10:00 ÅM (solar time) Time (**OR**) 10 **CO2** A horizontal stick, 1 m long, is fixed at right angles to a vertical south facing wall. Calculate the length and direction of the shadow cast by the stick on the wall for the following situation. Location : Jodhpur (26018,N', 73001'E) : November 5 Date Time : 9:00 h (Solar time)

0.6		SECTION-C					
Q 9		Explain the working of solar vapor absorption with neat sketch. Write the advantages					
0.10	of solar power refrigeration system over vapor compression refrigeration system						
Q 10	Calculate the overall heat loss coefficient for cylindrical parabolic collector with the						
	following data						
	Absorber tube outer diameter						
	Absorber tube inner diameter: 6.0 cmGlass cover outer diameter: 15.8 cm						
	Glass cover outer diameter						
	Glass cover inner diameter	: 15.0 cm					
	Length of concentrator : 3.5 m						
	Emissivity/Absorptivity of glass cover : 0.88 Emissivity of absorber tube surface : 0.22						
	Emissivity of absorber tube surface						
	Ambient temperature	: 20°C					
	Wind velocity : 1.5 m/s						
	Average absorber tube temperature	: 200°C					
	(OR)						
	sloping at an angle of 40° . The concentra	W axis and oriented with its aperture plane ation ratio of the collector is 6.5, the width of gth is 2 m. The collector is used for heating a					
	sloping at an angle of 40° . The concentration its absorber tube plate is 6 cm and its length fluid (Cp = 2.35 kJ/kg-K) which enters a		20	co			
	sloping at an angle of 40° . The concentration its absorber tube plate is 6 cm and its length fluid (Cp = 2.35 kJ/kg-K) which enters a temperature of the fluid and the instantation of the fluid and the ins	ation ratio of the collector is 6.5, the width of gth is 2 m. The collector is used for heating a at a temperature of 130° C. Calculate the exit neous collection efficiency for the following	20	CO			
	sloping at an angle of 40° . The concentration its absorber tube plate is 6 cm and its length fluid (Cp = 2.35 kJ/kg-K) which enters a temperature of the fluid and the instantation.	ation ratio of the collector is 6.5, the width of gth is 2 m. The collector is used for heating a at a temperature of 130°C. Calculate the exit	20	CO			
	sloping at an angle of 40° . The concentration its absorber tube plate is 6 cm and its length fluid (Cp = 2.35 kJ/kg-K) which enters a temperature of the fluid and the instantation. Location of the collector	ation ratio of the collector is 6.5, the width of gth is 2 m. The collector is used for heating a at a temperature of 130°C. Calculate the exit neous collection efficiency for the following : New Delhi (28.58°N)	20	co			
	 sloping at an angle of 40⁰. The concentrative absorber tube plate is 6 cm and its length fluid (Cp = 2.35 kJ/kg-K) which enters a temperature of the fluid and the instantation. Location of the collector Date Sun hour 	ation ratio of the collector is 6.5, the width of gth is 2 m. The collector is used for heating a at a temperature of 130°C. Calculate the exit neous collection efficiency for the following : New Delhi (28.58°N) : November 5	20	CO			
	sloping at an angle of 40° . The concentration its absorber tube plate is 6 cm and its length fluid (Cp = 2.35 kJ/kg-K) which enters a temperature of the fluid and the instantation. Location of the collector Date	ation ratio of the collector is 6.5, the width of gth is 2 m. The collector is used for heating a at a temperature of 130°C. Calculate the exit neous collection efficiency for the following : New Delhi (28.58°N) : November 5 : 15°	20	co			
	 sloping at an angle of 40⁰. The concentrative absorber tube plate is 6 cm and its length fluid (Cp = 2.35 kJ/kg-K) which enters at temperature of the fluid and the instantation. Location of the collector Date Sun hour Ig 	ation ratio of the collector is 6.5, the width of gth is 2 m. The collector is used for heating a at a temperature of 130° C. Calculate the exit neous collection efficiency for the following : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m ²	20	CO			
	 sloping at an angle of 40⁰. The concentrative absorber tube plate is 6 cm and its length fluid (Cp = 2.35 kJ/kg-K) which enters at temperature of the fluid and the instantation. Location of the collector Date Sun hour Ig Id 	ation ratio of the collector is 6.5, the width of gth is 2 m. The collector is used for heating a at a temperature of 130°C. Calculate the exit neous collection efficiency for the following : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m ² : 0.162 kW/m ²	20	со			
	 sloping at an angle of 40⁰. The concentrative absorber tube plate is 6 cm and its length fluid (Cp = 2.35 kJ/kg-K) which enters at temperature of the fluid and the instantation. Location of the collector Date Sun hour Ig Id Number of tubes 	ation ratio of the collector is 6.5, the width of gth is 2 m. The collector is used for heating a at a temperature of 130°C. Calculate the exit neous collection efficiency for the following : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m ² : 0.162 kW/m ² : 2	20	СО			
	 sloping at an angle of 40⁰. The concentrative absorber tube plate is 6 cm and its length fluid (Cp = 2.35 kJ/kg-K) which enters at temperature of the fluid and the instantation. Location of the collector Date Sun hour Ig Id Number of tubes Tube outer diameter 	ation ratio of the collector is 6.5, the width of gth is 2 m. The collector is used for heating a at a temperature of 130° C. Calculate the exit neous collection efficiency for the following : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m ² : 0.162 kW/m ² : 2 : 18 mm	20	CO			
	 sloping at an angle of 40⁰. The concentrative absorber tube plate is 6 cm and its length fluid (Cp = 2.35 kJ/kg-K) which enters at temperature of the fluid and the instantation. Location of the collector Date Sun hour Ig Id Number of tubes Tube outer diameter Tube inner diameter 	ation ratio of the collector is 6.5, the width of gth is 2 m. The collector is used for heating a at a temperature of 130°C. Calculate the exit neous collection efficiency for the following : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m ² : 0.162 kW/m ² : 2 : 18 mm : 14 mm	20	CO			
	 sloping at an angle of 40⁰. The concentrative absorber tube plate is 6 cm and its length fluid (Cp = 2.35 kJ/kg-K) which enters at temperature of the fluid and the instantation. Location of the collector Date Sun hour Ig Id Number of tubes Tube outer diameter Tube inner diameter Transmissivity of glass cover 	ation ratio of the collector is 6.5, the width of gth is 2 m. The collector is used for heating a at a temperature of 130° C. Calculate the exit neous collection efficiency for the following : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m^2 : 0.162 kW/m^2 : 2 : 18 mm : 14 mm : 0.89	20	со			
	 sloping at an angle of 40⁰. The concentrative absorber tube plate is 6 cm and its length fluid (Cp = 2.35 kJ/kg-K) which enters at temperature of the fluid and the instantation. Location of the collector Date Sun hour Ig Id Number of tubes Tube outer diameter Tube inner diameter Transmissivity of glass cover Reflectivity of concentrator 	ation ratio of the collector is 6.5, the width of gth is 2 m. The collector is used for heating a at a temperature of 130° C. Calculate the exit neous collection efficiency for the following : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m^2 : 0.162 kW/m^2 : 2 : 18 mm : 14 mm : 0.89 : 0.87 : 0.94 : $10.5 \text{ W/m}^2\text{-K}$	20	CO			
	 sloping at an angle of 40⁰. The concentrative absorber tube plate is 6 cm and its length fluid (Cp = 2.35 kJ/kg-K) which enters at temperature of the fluid and the instantation. Location of the collector Lote Sun hour Ig Id Number of tubes Tube outer diameter Tube inner diameter Transmissivity of glass cover Reflectivity of concentrator Absorptivity of absorber surface 	ation ratio of the collector is 6.5, the width of gth is 2 m. The collector is used for heating a at a temperature of 130° C. Calculate the exit neous collection efficiency for the following : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m^2 : 0.162 kW/m^2 : 2 : 18 mm : 14 mm : 0.89 : 0.87 : 0.94 : $10.5 \text{ W/m}^2\text{-K}$	20	СО			
	 sloping at an angle of 40⁰. The concentrative absorber tube plate is 6 cm and its length fluid (Cp = 2.35 kJ/kg-K) which enters at temperature of the fluid and the instantation. Location of the collector Date Sun hour Ig Id Number of tubes Tube outer diameter Transmissivity of glass cover Reflectivity of concentrator Absorptivity of absorber surface Overall heat loss coefficient 	ation ratio of the collector is 6.5, the width of gth is 2 m. The collector is used for heating a at a temperature of 130° C. Calculate the exit neous collection efficiency for the following : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m^2 : 0.162 kW/m^2 : 2 : 18 mm : 14 mm : 0.89 : 0.87 : 0.94 : $10.5 \text{ W/m}^2\text{-K}$	20	со			

Correlations for cylindrical parabolic concentrating collector.

1) Heat transfer coefficient between absorber tube and glass tube

$$\frac{k_{\text{eff}}}{k} = 0.317 \text{ (Ra*)}^{1/4}$$

$$(\text{Ra*})^{1/4} = \frac{\ln(D_{ci}/D_o)}{b^{3/4} \left(\frac{1}{D_o^{3/5}} + \frac{1}{D_{ci}^{3/5}}\right)^{5/4}} \text{Ra}^{1/4}$$

$$\frac{2\pi k_{\text{eff}}}{\ln(D_{ci}/D_o)} (T_{pm} - T_c) = h_{p-c} \pi D_o (T_{pm} - T_c)$$

$$h_{p-c} = \frac{2k_{\text{eff}}}{D_o \ln(D_{ci}/D_o)}$$

2) Heat transfer coefficient on the outer surface of the glass cover.

 $Nu = C_1 Re^n$

where C_1 and *n* are constants having the following values:

For 40 < Re < 4000, $C_1 = 0.615$, n = 0.466For $4000 < \text{Re} < 40\ 000$, $C_1 = 0.174$, n = 0.618For $40\ 000 < \text{Re} < 400\ 000$, $C_1 = 0.0239$, n = 0.805

Equations for Compound parabolic collector

1) Heat flux

$$S = \left[I_b r_b + \frac{I_d}{C} \right] \tau \rho_e \alpha$$

2) Useful heat gain

$$q_{u} = F_{R}WL \left[S - \frac{U_{l}}{C} (T_{fi} - T_{a}) \right]$$

$$F_{R} = \frac{\dot{m}C_{p}}{bU_{l}L} \left[1 - \exp\left\{ -\frac{F'bU_{l}L}{\dot{m}C_{p}} \right\} \right]$$

$$\frac{1}{F'} = U_{l} \left[\frac{1}{U_{l}} + \frac{b}{N\pi D_{i}h_{f}} \right]$$

3) Tilt angle

$$r_b = \frac{\cos(L-\beta)\cos\delta\cos\omega + \sin(L-\beta)\sin\delta}{\cos L\cos\delta\cos\omega + \sin L\sin\delta}$$

Properties of air

T (K)	р (kg/m ³)	c _p (kJ/kg-°C)	$\substack{\mu \text{ (kg/m-s)}\\ \times 10^{-5}}$	${\scriptstyle {igvar} u ({ m m}^2/{ m s}) \ imes 10^{-6}}$	<i>k</i> (W/m-°C)	$\stackrel{\alpha(m^{2}\!/s)}{\times10^{-4}}$	Pr
100	3.6010	1.0266	0.692	1.923	0.00925	0.0250	0.770
150	2.3675	1.0099	1.028	4.343	0.01374	0.0575	0.753
200	1.7684	1.0061	1.329	7.490	0.01809	0.1017	0.739
250	1.4128	1.0053	1.488	9.490	0.02227	0.1316	0.722
300	1.1774	1.0057	1.983	16.84	0.02624	0.2216	0.708
350	0.9980	1.0090	2.075	20.76	0.03003	0.2983	0.697
400	0.8826	1.0140	2.286	25.90	0.03365	0.3760	0.689
450	0.7833	1.0207	2.484	31.71	0.03707	0.4222	0.683
500	0.7048	1.0295	2.671	37.90	0.04038	0.5564	0.680
550	0.6423	1.0392	2.848	44.34	0.04360	0.6532	0.680
600	0.5879	1.0551	3.018	51.34	0.04659	0.7512	0.680
650	0.5430	1.0635	3.177	58.51	0.04953	0.8578	0.682
700	0.5030	1.0752	3.332	66.25	0.05230	0.9672	0.684
750	0.4709	1.0856	3.481	73.91	0.05509	1.0774	0.686
800	0.4405	1.0978	3.625	82.29	0.05779	1.1951	0.689
850	0.4149	1.1095	3.765	90.75	0.06028	1.3097	0.692
900	0.3925	1.1212	3.899	99.30	0.06279	1.4271	0.696
950	0.3716	1.1321	4.023	108.2	0.06225	1.5510	0.699
1000	0.3524	1.1417	4.152	117.8	0.06752	1.6779	0.702

Notes: T = temperature, $\rho = density$, $c_p = specific heat capacity$, $\mu = viscosity$, $v = \mu \rho = kinetic viscosity$, k = thennal conductivity, $\alpha = c_p \rho / k = heat$ (thermal) diffusivity, $\Pr = Prandil number$