Name:

Enrolment No:

Semester: VII

Max. Marks: 100

Time 03 hrs.

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Refrigeration and Air Conditioning Program: B.TECH Mech. /Mech Splz.

Course Code: MHEG 484

Instructions:

- 1. Attempt all the questions in order.
- 2. Assume any other missing data.
- 3. Draw the T-s and P-v diagram wherever needed.
- 4. Use of Refrigeration charts (Ammonia, R12, R11, R22 etc.), Steam Table, and Psychrometeric chart is allowed in the examination hall.

	SECTION A (5 × 4 marks)	ſ	
S. No.		Marks	CO
Q 1	A refrigerating machine working on reversed Carnot cycle consumes 5.5 kW for producing refrigerating effect of 940 kJ/min for maintaining a region at -38 deg. C. Determine (i) COP of refrigerating machine (ii) Higher temperature of cycle.	4	CO 2
Q 2	How can moisture be removed from a refrigeration system?	4	CO 1
Q 3	The pressure and temperature of air in a room are 1.0132 bar and 30 deg. C respectively. If the relative humidity is found to be 40%, estimate: (i) The partial pressure of water vapour (ii) The specific volume of each component.	4	CO 4
Q 4	State the properties and uses of the following refrigerants: (i) Ammonia (ii) R11 (Trichloro monofluoro methane)	4	CO 3
Q 5	Describe briefly about the following processes: (i) Sensible heating (ii) Cooling and dehumidification.	4	CO 4
	SECTION B (4 × 10 marks)		
Q 6	(a) In a refrigerator working on Bell-Coleman cycle, the air is drawn into the cylinder of the compressor from the cold chamber at a pressure of 1.03 bar and temperature 12 deg. C. After isentropic compression to 5.5 bar, the air is cooled at constant pressure to a temperature of 22 deg. C. The polytropic expansion $pv^{1.25}$ = constant then follows and the air expanded to 1.03 bar is passed to cold chamber. Determine: (i) Work done per kg of airflow (ii) Refrigerating effect per kg of airflow (iii) COP (iv) Refrigerating capacity of	10	CO 2

SECTION A (5 × 4 marks)

		the plant 1.003 kJ/l		for a mass	flow rate of 90 kg/h	For air take $\gamma = 1.4$,	C _p =		
	(or)								
	(b) A refrigerator works between -7 deg. C and 27 deg. C. The vapour is dry at the								
	end of adiabatic compression. There is no under-cooling and evaporation is by								
	throttle valve. Determine: (i) The co-efficient of performance (ii) Power of the								
		compressor to remove 180 kJ/min. The properties of the refrigerant are as under:							
		Temp.	Fnthaln	y (kJ/kg)	Entropy of liquid	iquid Entropy of vapor			
		(deg. C)	Liquid	Vapor	(kJ/kg K)	(kJ/kg K)			
		-7	-30	1298	-0.108	4.75			
		27	115	1173	427	4.33			
					1				
Q 7	A small-size cooling tower is designed to cool 5.5 litres of water per second, the inlet temperature of which is 44 deg. C. The motor-driven fan induces 9 cubic m/s of air through the tower and the power absorbed is 4.75 kW. The air entering the tower is at 18 deg. C, and has a relative humidity of 60%. The air leaving the tower can be assumed to be saturated and its temperature is 26 deg. C. Calculate: (i) The amount of cooling water (make-up) required per second (ii) The final temperature of the water. Assume that the pressure remains constant throughout the tower at 1.013 bar.							10	CO 5
Q 8	The pressure and temperature of air in a room are 1.0132 bar and 30 deg. C respectively. If the relative humidity is found to be 40%, estimate: (i) The partial pressure of water vapour (ii) The specific volume of each component; (iii) The specific humidity.							10	CO4
Q 9	What is a condenser? How are condensers classified? Explain briefly about aircooled condenser with the help of neat diagram and state its merits and demerits too?						oled	10	CO 1
	I			SEC	CTION-C (2×20 ma	arks)	I		
Q 10	(a) Define a 'Unitary system'. Discuss briefly about the following (i) Attic fans (ii)								
L - v	Remote units (iii) Self-contained units								
	(b) Design an air conditioning system for an industrial process for the following hot								
	and wet summer conditions:								CO 5
	Outdoor conditions: 32 deg. C DBT and 65% R.H.								
	Required air inlet conditions: 25 deg. C DBT and 60% R.H.								
	Amount of free air circulated: 250 cubic. m/min								

	Coil dew temper The required con heating. Calculat by-pass factor (ii of the heating co per hour.	ndition is act te the follow) Heating ca	hieved by ing: (i) Th pacity of t	ne cooling of he heating of heati	capacity of	the cooling and surface	coil and its temperature		
Q 11	temperature of 5 capacity is 7 to compression is required to run system. Take en properties of F-1 Temp deg. C 50 0 (a) Explain brie	a neat diagra 12 vapour 0 deg. C and onnes. The isentropic. If the compress nthalpy at t 2 are detailed Pressure bar 12.199 3.086 fly about and a vapour com- ng machine of the machine at of 2400 k the COP of the state of 2400 k the COP of the the COP of the state of 2400 k the COP of the state of the con- state of the con-	m? compressi l evaporati liquid lea Determine sor (iii) The end of d in table b hf kJ/kg 84.868 36.022 utomatic e vantages pression r operates or The refrige l leaves th e at 15 deg g in a day, the machi	on refriger ing tempera ving the c (i) The ref he heat reject f isentropic below. hg kJ/kg 206.298 187.397 (or) expansion v of using a refrigeration n ideal vapo erant enters is condense g. C and lea , determine ne. Use re	ration systemature of 0 d ondenser i frigerant flo ected in the compress sf kJ/kg K 0.3034 0.1418 valve and n expansion cycle? our compress the comp r as saturatives as ice the power i frigerant ta	em has a eg. C. The r s saturated ow rate (ii) e plant (iv) ion = 210 g_{g}^{sg} kJ/kg K 0.6792 0.6960 thermostation thermostation ssion refrige ressor as d ted liquid at at -5 deg. C required to able only t	condensing refrigeration liquid and The power COP of the kJ/kg. The c expansion stead of an eration cycle ry saturated t 30 deg. C. C. For an ice run the unit.	20	CO 2