Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2019

Course: Waste Heat Recovery & Cogeneration

Program: B tech ET+IPR

Course Code: ETEG411

Semester: VII

Time 03 hrs.

Max. Marks: 100

Instructions: Read the question paper carefully before answering, Section B and C has one internal choice.

	SECTION A		
S. No.		Marks	CO
Q 1	What are the designs available for recuperators? Explain with neat diagram	4	CO1
Q 2	Using line diagram, show any two sources for heat and two sources for waste heat in the Cement Industry.	4	CO3
Q 3	What are absorption chillers? In addition, why are they intrinsic to the WHR units?	4	CO4
Q 4	Enumerate the various site selection criteria Trigeneration, and where it finds applicability.	4	CO5
Q 5	Explain why the Brayton cycle and the Rankine cycle while working together recovers more energy from fuel than either cycles working independently.	4	CO2
	SECTION B		
Q 6	Graphically show the concepts of "Power First" and "Heat First" economics. Further, explain the implications for the same in terms of Capital cost, operating cost, and Environmental aspects.	10	CO2
Q 7	A double pipe heat exchanger is used to cool a hot stream from 177° C to 121° C by heating a cold stream from 77° C to 49° C. The hot stream will flow in the inner pipe in a counter flow arrangement to the cold stream in the outer pipe. The heat transfer surface area of 18.5 m² will transfer the heat load of 1025.85 kW. Determine the overall heat transfer co-efficient (U).	10	CO4
Q 8	Comment on the working of Triple effect Vapor absorption Machines with the help of a neat flow diagram. How hybrid systems can be integrated into this? Enlist the limitations of such systems. OR	10	CO5

power p	rief account of the i	e cogeneration pla	ınt. Provide suitabl			
Determing following Coal air Air flow Energy	are the advantages ne the air fuel rating data flow rate: 48.64 TP rate: 112.6 TPH Consumption: 351 kmally explain the sign	io and specific o	energy consumpti		10	СО
in air pr	eheating.	SEC	TION C			
		SEC	TION-C			
	The following is data for a cogeneration plant with a Steam Turbine. The plant requires 4.5 MW of Electrical Power.					
Proc	ess Steam Flow (TPH)	Pressure (kg/cm ²)	Temperature (°C)	Enthalpy (Kcal/kg)		
Boiler	31.25	62	486	808		
Proces	s-I 3.25	20	310	669		
Proces	s-II 8.00	7	174	662		
Proces	s-III 20.0	4	160	659		
parame Additio	Draw a block diagram depicting the process with necessary heat balance parameters . Additional Data Given: Alternator efficiency = 95%, Transmission efficiency = 95%, Stage (Isentropic) efficiency = 84.2%, Mechanical efficiency of the turbine = 95%.					СО
	Efficiency of the boiler is 78% with enthalpy for Feed water at 60 KCal/kg.					
The fue	The fuel is coal with average $GCV = 4000 \text{ KCal/kg}$.					
(a) The	Calculate the following: (a) The total power that could be generated by the Turbine. (b) Additional power to be purchased from Grid. (c) Heat to power ratio for the Cogeneration Plant. 					

	(d) Hourly Fuel Consumption rate in TPH.(e) Energy Utilization Factor (EUF) of the Cogeneration Plant.		
Q 11	Construct a neatly labelled flow diagram showing the process flow for integrating VAM with Gas Turbines. Also, explain the relative advantages and applications of the system.		
	OR	20	CO4