Name:						
Enrolm	olment No:					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019						
Programme Name:B. Tech. ASESemCourse Name:Computational Fluid DynamicsTimCourse Code:GNEG 401MaxNos. of page(s):03Max		Semester Time Max. Mark				
Instruc						
C No	SECTION A	Manla	CO			
<u>S. No.</u> Q 1	Sketch the various models of fluid flow used for derivation of governing	Marks	CO			
τ -	equations. Write down the forms of equations that emanate from these mode on applications conservation laws.		CO1			
Q 2	List down any four applications of Computational Fluid Dynamics.	4	CO1			
Q 3	Discuss a mathematical model for the <i>round off error</i> for a finite difference discretization on a structured grid.	ce 4	CO1			
Q 4	Consider the function $\phi(x, y) = \sin x + \cos y$	4	CO2			
	a. Calculate the values of $\frac{\partial \phi}{\partial x}$ at a point $(x,y) = (1,1)$ using find	st				
	order forward difference, with $\Delta x = \Delta y = 0.1$.					
	b. Calculate the values of $\frac{\partial \phi}{\partial x}$ at a point (x,y) = (1,1) using second	nd				
	order central difference, with $\Delta x = \Delta y = 0.1$.					
Q 5	Formulate any two approximations for the evaluation surface integral of flux	es 4	CO2			
	over the east face of a two-dimensional control volume.					
	SECTION B					
Q 6	Illuminate the need of a body fitted coordinate system for the solution	of 10	CO1			
	governing flow equations using finite difference method. Explain thus, the	ne				
	philosophy of elliptic grid generation around an airfoil.					
Q 7	Illustrate the strong and weak forms of the weighted residual formulation formulation	or 10	CO2			
	finite element discretization. Justify that a proper choice of weight function					

	makes the weighted residual formulation equivalent to Finite difference or		
	Finite Volume Methods.		
	OR		
	Define shape functions as used in Finite Element Method. Deduce shape		
	functions for a one-dimensional quadratic element for the value of a function at		
	any location in the domain in terms of nodal values.		
Q 8	Define the CDS interpolation scheme for the evaluation of fluxes at face centre	10	CO2
	using the nodal values on a structured finite volume grid. Find the order of		
	accuracy of this scheme and discuss its advantages and disadvantages.		
Q 9	Discuss an explicit time marching algorithm for the solution of transient Euler	10	CO3
	equations in 2-dimensions.		
	SECTION-C		
Q 10	Consider a two-dimensional square plate ABCD with edges AB and CD	20	CO4
	maintained at temperatures of 200 °K and 100 °K respectively. The other two		
	edges DA and BC are also maintained at temperatures of 200 °K, except at the		
	corners C and D. Find the steady state temperatures of at least 9 locations on the		
	plate. Take $AB=BC=CD=DA=4$ cm. Use pure Gauss-Seidel relaxation scheme		
	for at least 4 iterations.		
	The two-dimensional steady state heat conduction is governed by		
	$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$		
Q 11	Derive the <i>modified equation</i> that emanates from the first order forward in time	20	CO3
	and backward in space discretization of the first order wave equation given		
	below.		
	$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$		
	Discuss the nature of dominating error for the above discretization and suggest		
	means to minimize them.		
	OR		

Deduce the <i>modified equation</i> for the solution of the first order wave equation	
using Lax Method given by	
$\frac{u_j^{n+1} - (u_{j+1}^n + u_{j-1}^n)/2}{\Delta t} + c \frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x} = 0$ Hence, discuss the effect of the dominating error on the solution obtained.	