Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Flight Mechanics-II Program: B-TECH ASE/ASEA Time: 03 hrs. No. of Pgs:-3 Semester: VII Course Code: ASEG-401 Max. Marks: 100

Instructions: Note: Make use of *sketches/plots* to elaborate your answer. Brief and to the point answers are expected. The Question Paper contain 3 Sections- Section A, B and C

SECTION A				
S. No.	All questions are compulsory	Marks	CO	
Q 1	Write the three types of controls with reference to C.G of an airplane. What are the two necessary criteria for longitudinal balance and static stability?	4	C01	
Q 2	Which of the following represents a graph of $C_{M, ac}$ (X-axis : Angle of attack, α ; Y-axis: Moment coefficient about ac, $C_{M, ac}$. a) b) c) d) d) A spring mass damper system with a mass of 1kg is found to have a damping ratio of 0.2 and a natural frequency of 5rad/s. Calculate damping of the system.	4	CO2	
Q 3	Define angle of yaw and angle of side slip with figure	4	CO1	
Q 4	Write short note on Crosswind landing and Adverse Yaw.	4	CO4	

Q 5	What is snaking. Sketch the snaking motion of an aircraft	4	CO2
	SECTION B		1
Q 6	A model of an airplane is tested in a wind tunnel without vertical tail. Contributions of various components give $C_{n\beta} = -0.0012 \text{ deg}^{-1}$. If the vertical tail is to be positioned at a point on the aft end of the fuselage giving a tail length of 4.8m, how much vertical tail area is required to give an overall $C_{n\beta} = 0.0012 \text{ deg}^{-1}$? Assume that vertical tail would have an effective wing area is 18 m ² , wing span is 10.6m, tail moment arm is 4.8m and $C_{y\beta} = 0.0454 \text{ deg}^{-1}$.	10	CO4
Q 7	$ \begin{array}{l} \mbox{Explain in detail about the elevator control power with sketches .Derive the equation} \\ C_{m\delta e} = - C_{L,\alpha t} V \eta \zeta \\ \\ \mbox{OR} \\ \mbox{Explain in detail about the elevator control effectiveness. Derive the equation for the} \\ \mbox{control effectiveness of elevator } C_{L\delta e.} \end{array} $	10	CO3
Q 8	Explain the position and orientation of an aircraft relative to earth and describe it in terms of Euler's angles	10	CO5
Q 9	How Cl_{β} contributes in determining lateral stability for ailerons. Derive an expression of Cl_{β} .	10	CO4
	SECTION-C		
Q 10	 (a) Derive an expression of Directional stability for tailless aircraft. C_{nβ} = C_D Sin 2Ω ^ȳ/_b (b)Explain effect of Cn_{δr} in determining directional stability for rudder. Derive an expression Cn_{δr}. (c) Explain phenomena "Rudder Lock" and methods to prevent it. 	20	CO4
Q11	(a) Define Terminology:- Spiral divergence, dutch roll, directional divergence, Phugoid motion & short period motion.(b) Derive frequency and damping ratio for long- period and short-period motions.(c)Determine ω_n , ζ for short period and phugoid approximations if following data is given : $X_u = -0.045s^{-1}$, $X_w = 0.036s^{-1}$, $X\dot{w} = 0$ $Z_u = -0.369s^{-1}$, $Z_w = -2.02s^{-1}$ $Z\dot{w} = 0$ $M_u = 0$ $M_w = -0.05$ $M \dot{w} = -0.0651$, $X_q = 0$ $Z_q = 0$	20	CO5

OR	
(a)Derive six degrees freedom equation in Inertial frame of Reference of an aircraft.	
(b)Derive an expression for critically damped system $\frac{c}{2m} = \sqrt{\frac{k}{m}}$ and explain under damped, overdamped, critically damped system using graphical representation.	