Name: Enrolment No:		UNIVERSITY WITH A PURPOSE	
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019			
Course: Orbital Mechanics Program: B. Tech ASE \& ASE+AVE Course Code: ASEG 482	Semester: VII Time 03 hrs. Max. Marks: 100		
Instructions: Make use of sketches/plots to elaborate your answer. Brief and to the point, answers are expected. The Question paper has three sections: Section A, B and C, Section B and C having internal choices.			
SECTION A			
S. No.	Questions	Marks	CO
Q 1	Calculate the velocity of an artificial satellite orbiting the Earth in a circular orbit at an altitude of 200 km above the Earth's surface.	4	CO1
Q 2	What is orbital velocity? Write some advantages of Low Earth orbit.	4	CO 2
Q 3	Draw and explains the satellite attitude control system.	4	CO4
Q 4	Explain the various Attitude sensors.	4	CO4
Q 5	Plot the spacecraft trajectory on a velocity-altitude map	4	CO3
SECTION B			
Q 6	A satellite is launch into Earth orbit, where its launch vehicle burns out at an altitude of $\mathbf{2 5 0} \mathbf{~ k m}$. At burnout condition, the satellite's velocity is $\mathbf{7 , 9 0 0} \mathbf{~ m} / \mathbf{s}$ with the zenith angle equal to $\mathbf{8 9}$ degrees. Calculate the semi-major axis of the orbit for the satellite. Discuss the various orbital elements.	10	CO
Q 7	a) An artificial Earth satellite is in an elliptical orbit which brings it to an altitude of $\mathbf{2 5 0} \mathbf{~ k m}$ at perigee and out to an altitude of $\mathbf{5 0 0} \mathbf{~ k m}$ at apogee. Calculate the velocity of the satellite at both perigee and apogee. b) Radius of earth $=\mathbf{6 . 3 7 8} \times \mathbf{1 0}^{8} \mathbf{m}, g=\mathbf{9 . 8 1} \mathrm{m} / \mathrm{sec}^{2}$, height of satellite $=\mathbf{3 5 . 9} \times 10^{6} \mathrm{~m}$, $\boldsymbol{\theta}=\mathbf{1 0 . 5}{ }^{\circ}$ to equator. How much velocity is required to make the orbit of satellite equatorial?	05+05	CO 2
Q 8	A spacecraft is in a circular parking orbit with an altitude of $\mathbf{2 0 0} \mathbf{~ k m}$. Calculate the velocity change required to perform a Hohmann transfer to a circular orbit at geosynchronous altitude. Draw the trajectory of Hohmann transfer with suitable equations.	10	$\mathrm{CO3}$

Q 9	The satellite open loop transfer function is $\boldsymbol{G}(\boldsymbol{s})=\frac{\boldsymbol{K}}{\boldsymbol{s}\left(\boldsymbol{s}^{2}+\mathbf{6} \boldsymbol{s}+\mathbf{1 0}\right)}$ Sketch the root locus of the unity feedback system. (Or) The open loop transfer function of a unity feedback control system is given by $G(s)=\frac{K}{(s+2)(s+4)\left(s^{2}+6 s+25\right)}$ State the stability of the closed loop system as a function of k .Determine the value of ' k ', which will cause sustained oscillations in the closed loop systems. Where are the corresponding oscillating frequencies?	10	$\mathrm{CO4}$
SECTION-C			
Q 10	A satellite is in a circular Earth orbit at an altitude of $\mathbf{4 0 0} \mathbf{~ k m}$. The satellite has a cylindrical shape $\mathbf{2 m}$ in diameter by $\mathbf{4 m}$ long and has a mass of $\mathbf{1 , 0 0 0} \mathbf{~ k g}$. The satellite is traveling with its long axis perpendicular to the velocity vector and its drag coefficient is 2.67. Calculate the perturbations due to atmospheric drag and estimate the satellite's lifetime	20	CO 2
Q 11	a) A satellite is in an orbit with a semi-major axis of $\mathbf{7 , 5 0 0} \mathbf{~ k m}$, an inclination of $\mathbf{2 8 . 5}$ degrees, and an eccentricity of $\mathbf{0 . 1}$. Calculate the J 2 perturbations in longitude of the ascending node and argument of perigee. Also Discusses the orbital perturbation b) A satellite is in an orbit with a semi-major axis of $\mathbf{7 , 5 0 0} \mathrm{km}$ and an eccentricity of 0.1 Calculate the length of its position vector, its flight-path angle, and its velocity when the satellite's true anomaly is $\mathbf{2 2 5}$ degrees. (Or) a) Three identical mass ' m ' are located at corners of equilateral triangle and revolves in a circular orbit of radius ' R '. Calculate the velocity of each planet in an orbit and the total potential of the system? b) If satellite is revolving around earth in a circular orbit at a distance r from the center of earth. Find the extra energy that must be provided to the satellite to escape from earth's gravitational field?	20	CO

