Name:

Enrolment No:

Semester

: VII

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2019

Program Name: B.TECH-ADE

Course Name : Modeling and Simulation Time : 03 hrs.

Course Code : ADEG-436 Max. Marks: 100

Nos. of page(s): 02

Instructions: Attempt All Questions. One question from section B and C have an internal Choice.

Assume any Missing Data if required.

	e any Missing D			SEC	TION A				
S. No.								Marks	CO
Q1	Identify the implications of the system concept.						4	CO1	
Q2	Discuss 1.Con	Discuss 1.Component Integration Approach 2. Decision Process approach.						4	CO2
Q3	Why Lumped	Why Lumped approximation used in complex thermal engineering problems.						4	CO3
Q4	State Kuhn-tucker Condition in optimization of multivariable problem having inequality constraints.						4	CO4	
Q5	State advantages and disadvantages of simulation approach.					4	CO5		
	1			SEC	TION B				l
Q6	Experimental runs are performed on a compressor to determine the relationship between the volume flow rate Q and the pressure difference P. It is expected that Q will be proportional to P^b , where b is a constant. The measurements yield the mass flow rate Q for different pressure differences P as						10	CO3	
Q7	It is known that there is some error in the data. Will you use a best or an exact fit? Use the appropriate fit to these data and determine the coefficients. Is your equation a good fit? Find the extreme points of the following function								
Ψ'	Find the extreme points of the following function $f(x_1, x_2) = x_1^3 + x_2^3 + 3x_1^2 + 4x_2^2 + 16$						10	CO4	
Q8	Summarize various steps to design or analyze a complex system by simulation with flow chart.						10	CO5	

Q9	 a) State your understanding about Positive and negative definite in Hessian Matrix. Discuss indefinite case also. b) Find the extreme points of the function given below and calculate Relative minimum and maximum with nature of Hessian determinant. f(x1,x2) = 4x₁³ + 6x₂³ + 10x₁² + 4x₂² + 8 OR A rectangular beam is to be cut from a circular log of radius r. Find the cross-sectional dimensions of the beam to (a) maximize the cross-sectional area of the beam, and (b) maximize the perimeter of the beam section. 	[5+5] [10]	CO4
	SECTION-C		
Q10	1) Find the dimensions of a cylindrical tin (with top and bottom) made up of sheet metal to maximize its volume such that the total surface are is equal to 36π .	[10]	
	 2) Maximize f = 2x₁ + x₂ + 15 Subject to g(x,y) = x₁ + 2x₂² = 3 Find the solution using a. Method of Constrained Variation. b. Method of Lagrange Multiplier. 	[10]	CO4
Q11	Discuss following Simulations 1. Continuous 2. Combined Discrete-Continues 3. Monte Carlo 4. Spreadsheet OR Including following elements a) Problem Statement b) Program Organization and Logic c) Relevant Flow Charts d) Output and Discussion Simulate any Inventory System.	20	CO5