Name: Enrolment No:) DEES				
SECTION A									
S. No.								Marks	CO
Q1	Identify the	mpl	of th	m con				4	CO1
Q2	Discuss 1.	omp	tegra	pproac	Decisio	cess		4	CO2
Q3	Why Lump	d ap	tion	comp	ermal	eering	ems.	4	CO3
Q4	State Kuh inequality			ptimiz	of m	riable	em having	4	CO4
Q5	State adva	tages	adva	of sim	appr			4	CO5
SECTION B									
Q7	Find the extreme points of the following function$f\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{2}^{3}+3 x_{1}^{2}+4 x_{2}^{2}+16$							10	CO4
Q8	Summarize various steps to design or analyze a complex system by simulation with flow chart.							10	CO5

Q9	a) State your understanding about Positive and negative definite in Hessian Matrix. Discuss indefinite case also. b) Find the extreme points of the function given below and calculate Relative minimum and maximum with nature of Hessian determinant. $f(x 1, x 2)=4 x_{1}^{3}+6 x_{2}^{3}+10 x_{1}^{2}+4 x_{2}^{2}+8$ OR A rectangular beam is to be cut from a circular log of radius r. Find the crosssectional dimensions of the beam to (a) maximize the cross-sectional area of the beam, and (b) maximize the perimeter of the beam section.	$[5+5]$ $[10]$	$\mathrm{CO4}$
SECTION-C			
Q10	1) Find the dimensions of a cylindrical tin (with top and bottom) made up of sheet metal to maximize its volume such that the total surface are is equal to 36π. 2) Maximize $f=2 x_{1}+x_{2}+15$ Subject to $g(x, y)=x_{1}+2 x_{2}^{2}=3$ Find the solution using a. Method of Constrained Variation. b. Method of Lagrange Multiplier.	[10] [10]	$\mathrm{CO4}$
Q11	Discuss following Simulations 1. Continuous 2. Combined Discrete-Continues 3. Monte Carlo 4. Spreadsheet Including following elements a) Problem Statement b) Program Organization and Logic c) Relevant Flow Charts d) Output and Discussion Simulate any Inventory System.	20	$\mathrm{CO5}$

