| Name: <br> Enrolment No: |  | 15 UPES UNIVERSITY WITH A PURPOSE |  |
| :---: | :---: | :---: | :---: |
| \left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES   <br> End Semester Examination, December 2019  $\right]$ |  |  |  |
| SECTION A |  |  |  |
| S. No. |  | Marks | CO |
| Q 1 | How the belt conveyors are classified? | 5 | CO1 |
| Q 2 | State the objectives of a good plant layout. | 5 | CO2 |
| Q 3 | Draw the outline sketch of process layout. | 5 | CO 2 |
| Q 4 | Identify the various reasons for the requirement of modification of plant layout. | 5 | CO 3 |
| SECTION B |  |  |  |
| Q 5 | Describe and determine the effect of product, process, and schedule design parameters on plant layout and materials handling systems design. | 10 | CO4 |
| Q 6 | Explain how the global/foreign location requirement can be validated/justified. Discuss all relevant criteria. | 10 | CO 4 |
| Q 7 | Identify characteristic features of product and process layouts and their needs in terms of materials handling systems. | 10 | CO 4 |
| Q 8 | A company wishes to build a new plant in a country location. The following data are given. <br> Determine the optimum arrangement of the departments. Each department requires equal area and diagonal aisles are prohibited. The measure of effectiveness should be the total distance travelled. | 10 | CO 4 |


|  | Discuss the main features of four wheeled powered drives such as fork lift, trucks used during material handling with the aid of sketches |  |  |
| :---: | :---: | :---: | :---: |
| SECTION C |  |  |  |
| Q 9 | A local manufacturing firm has recently completed construction of a new plant to house 4 departments: A, B, C, and D. The plant is $100 \mathrm{~m}^{2} \times 50 \mathrm{~m}^{2}$. The plant manager has chosen an initial layout of the 4 departments. This layout is given in Figure 2-3. From the figure we see that department A requires $1800 \mathrm{~m}^{2}$, department B $1200 \mathrm{~m}^{2}$, department C $800 \mathrm{~m}^{2}$, and department D $1200 \mathrm{~m}^{2}$. <br> (i) Initial plant layout <br> (ii) Material flows between all departments. <br> (iii) Centroid locations <br> (iv) Distance matrix | 20 | CO 4 |



