Name	ment No:		
Enrolı	ment No:		
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End semester Examination, Dec. 2019		
Cours Cours Progr Instru	VII s: 100 s.		
	a) Design data handbook will be provided.b) Assume suitable value for missing data in any questions.		
S. No.	SECTION-A (Answer all four questions. All questions carry equal marks) (4x5=20 Marks)	Marks	CO
Q 1.	Draw a neat sketch of a piston and mark the component parts	5	CO1
Q 2.	Name the materials used for crankshaft	5	CO4
Q 3.	State the method of calculating the mass and cross section of flywheel rim	5	CO5
Q 4.	Define the following:a) Height of the governorb) Sleeve liftc) Equilibrium speedd) Maximum and minimum equilibrium	5	CO6
	SECTION-B (Attempt all four questions. All questions carry equal marks) (4x10=40 Marks)		
Q 5.	A four stroke diesel engine has the following specifications;		
	Brake power = 7.5 kW ; Speed = 1400 r.p.m. ; Mechanical efficiency = 80%		
	Indicated mean effective pressure = 0.35 N/mm^2 ; Maximum pressure = 3.5 N/mm^2		
	If the cylinder made of cast iron, determine the cylinder dimensions. Take L/D ratio is 1.5;		CO3
	Allowable stress for CI cylinder as 45 N/mm ² ; Allowance for Reboring C= 4 mm; Allowable stress for studs as 50 N/mm ²		
	Determine the dimensions of the engine cylinder, cylinder head, liner and bolts and		
	studs for a four-stroke internal combustion petrol engine.	10	
	(Or)		
	The cylinder of a four stroke diesel engine has following specifications:		
	Cylinder bore = 150 mm		
	Brake power = 3 Kw		
	Mechanical efficiency $= 80\%$		
	Indicated Mean effective pressure $= 0.3$ MPa		

	Total belt pull = 5.0 kN ; Engine speed = 200 r.p.m.		
	Maximum combustion pressure = 2.45 MPa; Weight of the flywheel = 6.80 kN		
	Bore = 100 mm; Stroke = 140 mm; Mean effective pressure = 0.9 MPa	20	CO4
	engine. The specifications are:		
Q 9.	Design a plain carbon steel center crankshaft for a single acting four-stroke single cylinder		
	(Attempt all two questions. All questions carry equal marks) (2x20=40 Marks)	
	SECTION-C		
	rim. Take ρ =7200 kg/m ³		
	in the flywheel is to be 5.5 MN/mm ² . Estimate the mean diameter and area of the flywheel		
	cycle. If the total fluctuation of speed is not to exceed 1% and the maximum centrifugal stress	10	CO5
	maximum fluctuation of energy can be assumed to be 0.9 times the energy developed per		
Q 8.	A single cylinder I.C.engine working on four stroke cycles develops 75 kW at 360 r.p.m. The		
	Maximum gas pressure = 4 MPa .		
	Allowable radial pressure on cylinder wall =0.03 MPa.		
	Allowable tensile stress = 100 N/mm^2	10	
	Number of piston rings = 4	10	CO1
	Thickness of piston head = 40 mm		
	Material for piston rings = Grey cast iron		
× ''	Cylinder bore = 250 mm ;		
Q 7.	Determine the Piston rings dimensions and length of the skirt based on following data:		
	flanges. Compare the values of t obtained in direct compression and buckling.		
	The rod of I section, with width, 4t, and depth, 5t where, 't' is the thickness of web and		
	Factor of safety $=5$	10	CO2
	Maximum explosion pressure = 2.2 N/mm^2	4.0	
	Diameter of the piston = 90 mm Length of the connecting rod = 300 mm		
Q 6.	Find the cross section of the connecting rod of a petrol engine, from the following data:		
0.6	and longitudinal stresses in cylinder wall.		
	Determine the thickness of cylinder wall. Also, calculate the apparent and net circumferential		
	Allowable tensile stress = 50 N/mm^2 .		
	Maximum gas pressure = 3 MPa		

	Willow the enough is at the ten dead center the process of the vistor is 1.1 N/?		
	When the crank is at the top dead center, the pressure on the piston is 1.1 N/mm^2 ; and the		
	torque is maximum. Take $1/r = 4.5$; the distance between the bearings 1 and 2 is 100 mm and 2		
	and 3 is 370; Allowable bearing pressure for crank pin = 10MPa; $\sigma_b = 60 \text{ N/mm}^2$		
	(Or)		
	Design a plain carbon steel center crankshaft for a single acting four stroke single cylinder		
	engines. The specifications are:		
	Bore = 100 mm ; Stroke = 140 mm ; Mean effective pressure = 0.9 MPa		
	Maximum combustion pressure = 2.45 MPa; Weight of the flywheel = 6.80 kN		
	Total belt pull = 5.0 kN ; Engine speed = 200 r.p.m.		
	When the crank has turned 32° form the top dead center, the pressure on the piston is 1.1		
	N/mm ² ; and the torque is maximum. Take $l/r = 4.5$; the distance between the bearings 1 and 2		
	is 100 mm; Allowable bearing pressure for crank pin = 10MPa; $\sigma_b = 60 \text{ N/mm}^2$		
Q 10.	a. Design of an exhaust valve for a horizontal diesel engine using following data:		
	Cylinder bore= 250 mm		
	Length of the stroke $= 300 \text{ mm}$		
	Engine speed $= 600$ rpm		
	Maximum gas pressure = 3.5 MPa		
	Seat angle = 45°		
	Take: Allowable bending stress for value = 50 N/mm^2		
	Calculate:		
	a) Diameter of valve port		CO5 /
	b) Diameter and thickness of valve head	20	CO37 CO6
	c) Diameter of valve stem		
	d) Maximum lift of valve (10)		
	b. In a governor of the Hartnell type, the mass of each ball is 1.5 kg and the lengths of the		
	vertical and horizontal arms of the bell crank lever are 100 mm and 50 mm respectively.		
	The fulcrum of the bell crank lever is at a distance of 90 mm from the axis of rotation.		
	The maximum and minimum radii of rotation of balls are 120 mm and 80 mm and the		