Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2019

Programme Name:B. TechMechatronicsCourse Name:Digital Signal Processing

Semester: VII Time: 03 hrs. Max. Marks: 100

Course Code:ELEG 363Nos. of page(s):01

Instructions: Attempt all questions from Section (A) and (B) and only one from Section (C). SECTION A

SECTION A			
S. No.		Marks	CO
Q1	Find the DTFT of the following two functions: (a) $x_1(n) = x(-n-2)$ where $x(n) = e^{-0.5n}u(n)$ (b) $x_2(n) = 5^{-n}u(n)$.	8	CO2
Q2	State and Prove convolution property of Discrete Time Fourier Transform. Using it, determine the convolution $x(n) = x_1(n) * x_2(n)$ of the sequences, where $x_1(n) = x_2(n) = \delta(n + 1) + \delta(n) + \delta(n - 1)$	7	CO1
Q3	Prove the statement " Circular Convolution is Linear Convolution with Aliasing."	7	CO2
Q4	Find the z transform of the following functions: (a) $x(n) = (-1)^n 2^{-n} u(n)$ (b) $x(n) = na^n \sin(\omega_0 n) u(n)$	8	CO2
	SECTION B		
Q5	Compute the eight point DFT of the sequence $x[n]=[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0]$ using the inplace radix-2 decimation in time and radix-2 decimation in frequency algorithms.	15	CO4
Q6	Determine the Discrete Fourier transform of the following signals. (i) $x[n]=u[n]$, (ii) $x[n]=(\cos \omega_0 n)u[n]$.	15	CO3
Q7	Find the inverse z transforms of the following two transfer functions: $H_1(z) = (z + 0.6)/[(z2 + 0.8z + 0.5)(z - 0.4)]$ $H_2(z) = (z + 0.4)(z + 1)/(z - 0.5)2$	15	CO2
	SECTION-C (Attempt any one question)		
Q8	Design a type I lowpass Chebyshev filter that has a 1-dB ripple in the pass band, a cutoff frequency $\Omega p = 1000\pi$, a stopband frequency of 2000π , and an attenuation of 40 dB or more for $\Omega \ge \Omega s$. Also determine the order and poles of the filter.	25	CO3
Q9	 When the input to an LTI system is, x[n]=(1/2)ⁿu[n]+2ⁿu[-n-1] the output is y[n]=6(1/2)ⁿu[n] - 6(3/4)ⁿu[n] . (i) Find the system function H(z) of the system. Plot the poles and zeros of H(z), and indicate the region of convergence. (ii) Find the impulse response h[n] of the system for all values of n. (iii) Write the difference equation that characterizes the system. (iv) Is the system stable? Is it causal? 	25	CO3