Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES			
End Semester Examination, December 2019			
Programme Name: B. Tech Mechatronics Semester: VII			
Course Name: Digital Signal Processing Time: 03			
Course Code: ELEG 363 Max. Marks: 100			
Nos. of page(s):			
Instructions: Attempt all questions from Section (A) and (B) and only one from Section (C).			
SECTION A			
S. No.		Marks	CO
Q1	Find the DTFT of the following two functions: (a) $\mathrm{x}_{1}(\mathrm{n})=\mathrm{x}(-\mathrm{n}-2)$ where $\mathrm{x}(\mathrm{n})=\mathrm{e}^{-0.5 \mathrm{n}} \mathrm{u}(\mathrm{n})$ (b) $x_{2}(n)=5^{-n} u(n)$.	8	CO 2
Q2	State and Prove convolution property of Discrete Time Fourier Transform. Using it, determine the convolution $x(n)=x_{1}(n) * x_{2}(n)$ of the sequences, where $x_{1}(n)=x_{2}(n)=$ $\delta(\mathrm{n}+1)+\delta(\mathrm{n})+\delta(\mathrm{n}-1)$	7	CO1
Q3	Prove the statement " Circular Convolution is Linear Convolution with Aliasing."	7	CO 2
Q4	Find the z transform of the following functions: (a) $x(n)=(-1)^{n} 2^{-n} u(n)$ (b) $x(n)=n a^{n} \sin \left(\omega_{0 n}\right) u(n)$	8	CO 2
SECTION B			
Q5	Compute the eight point DFT of the sequence $x[n]=[1 / 2,1 / 2,1 / 2,1 / 2,0,0,0,0]$ using the inplace radix-2 decimation in time and radix-2 decimation in frequency algorithms.	15	CO4
Q6	Determine the Discrete Fourier transform of the following signals. (i) $x[n]=u[n]$, (ii) $\mathrm{x}[\mathrm{n}]=\left(\cos \omega_{0} \mathrm{n}\right) \mathrm{u}[\mathrm{n}]$.	15	CO3
Q7	Find the inverse z transforms of the following two transfer functions: $\begin{aligned} & \mathrm{H}_{1}(\mathrm{z})=(\mathrm{z}+0.6) /[(\mathrm{z} 2+0.8 \mathrm{z}+0.5)(\mathrm{z}-0.4)] \\ & \mathrm{H}_{2}(\mathrm{z})=(\mathrm{z}+0.4)(\mathrm{z}+1) /(\mathrm{z}-0.5) 2 \end{aligned}$	15	CO2
SECTION-C (Attempt any one question)			
Q8	Design a type I lowpass Chebyshev filter that has a 1-dB ripple in the pass band, a cutoff frequency $\Omega p=1000 \pi$, a stopband frequency of 2000π, and an attenuation of 40 dB or more for $\Omega \geq \Omega \mathrm{s}$. Also determine the order and poles of the filter.	25	$\mathrm{CO3}$
Q9	When the input to an LTI system is, $x[n]=(1 / 2)^{n} u[n]+2^{n} u[-n-1]$ the output is $y[n]=6(1 / 2)^{n} u[n]-6(3 / 4)^{n} u[n]$. (i) Find the system function $\mathrm{H}(\mathrm{z})$ of the system. Plot the poles and zeros of $\mathrm{H}(\mathrm{z})$, and indicate the region of convergence. (ii) Find the impulse response $\mathrm{h}[\mathrm{n}]$ of the system for all values of n . (iii) Write the difference equation that characterizes the system. (iv) Is the system stable? Is it causal?	25	$\mathrm{CO3}$

