Name: Enrolment No:			
Course Progra Course Instru		100	
SECTION A			
S. No.		Marks	CO
Q 1	What factors contribute towards the selection of a problem for method study?	5	CO1
Q 2	What are the various symbols used for making process charts?	5	CO1
Q 3	State the general characteristics, advantages and limitations of the two most common methods of wage payment?	5	CO3
Q 4	Define anthropometry and show its importance?	5	CO4
SECTION B			
Q 5	Explain the various types of allowances used in the calculation of standard time?	10	CO2
Q 6	Discuss interrelationship between work study \& Ergonomics?	10	CO4
Q 7	Describe the Man-machine system? Explain its characteristics.	10	CO1
Q 8	Explain wage along with the general characteristics, advantages and limitations of the two most common methods of wage payment. OR Explain wage along with the general characteristics, advantages and limitations of the two most common methods of wage payment.	10	CO
SECTION-C			
Q 9	A stop watch time study has been made of an operation which consist of four elements. The table below gives the continuous time readings (in centiminutes), ratings and allowances for the elements. Determine i. Basic time and standard time for each element. ii. Standard of operation. iii. Whether the number of operations are sufficient for each element if the desired confidence level is 90% and accuracy required is $\pm 5 \%$.	20	CO2

	Element \rightarrow	1	2	3	4		
	Observation	Continuous watch readings (centimin.)					
	1	9	15	28	32		
	2	40	46	59	62		
	3	71	80	94	97		
	4	106	13	27	30		
	5	38	43	56	59		
	6	67	72	84	88		
	7	98	203	18	21		
	8	28	33	46	49		
	9	57	62	75	79		
	10	88	93	306	09		
	Avg. Rating (\%)	105	110	100	90		
	Allowances (\%)	15	10	20	25		
Q 10	F8or a milling suitability of al two situations	machine oper ocating one n man -mac	ion the elem achine and t ne charts.	ntal ti o mac			
	Element			Tim.			
	Pick up the pa	t and load in	fixture	. 40			
	Start machine			. 01			
	Advance table	5 cm and en	age feed	. 10			
	Mill one end	(automatic)		. 10			
	Stop machine			. 01			
	Return table,	0 cm		. 15			
	Loosen vice, tighten vice	reverse wo	kpiece, and	. 15		20	$\mathrm{CO1}$
	Start machine			. 01			
	Advance table	and engage		. 10			
	Mill other end	(automatic)		. 10			
	Loosen vice, r	move and la	aside part	. 10			
	Walk between	two machine		. 05			
	A hotel manag an old fashione bread at the san	r wishes to f d hand operat time, but it	d out the be d electric toa takes two ha	R way ster. It ds to			

To turn a slice of bread to toast the other side, the operator has to push the toaster door down and permit a spring to shut it back; this operation requires only one hand. Therefore two pieces of bread can be turned at the same time. The following are the elemental time needed to perform the operations:
Toasting $($ One side $)=.50 \mathrm{~min}$, Turning of toast $=.02 \mathrm{~min}$, Toasting $($ other side $)=$.50 min , Insertion time $=.05 \mathrm{~min}$, Removing time $=.05 \mathrm{~min}$. Assume that both hands can perform their tasks with the same degree of efficiency; draw :
(a) A man-machine chart of this operation.

Another chart showing the improvement in the method suggested by you.

