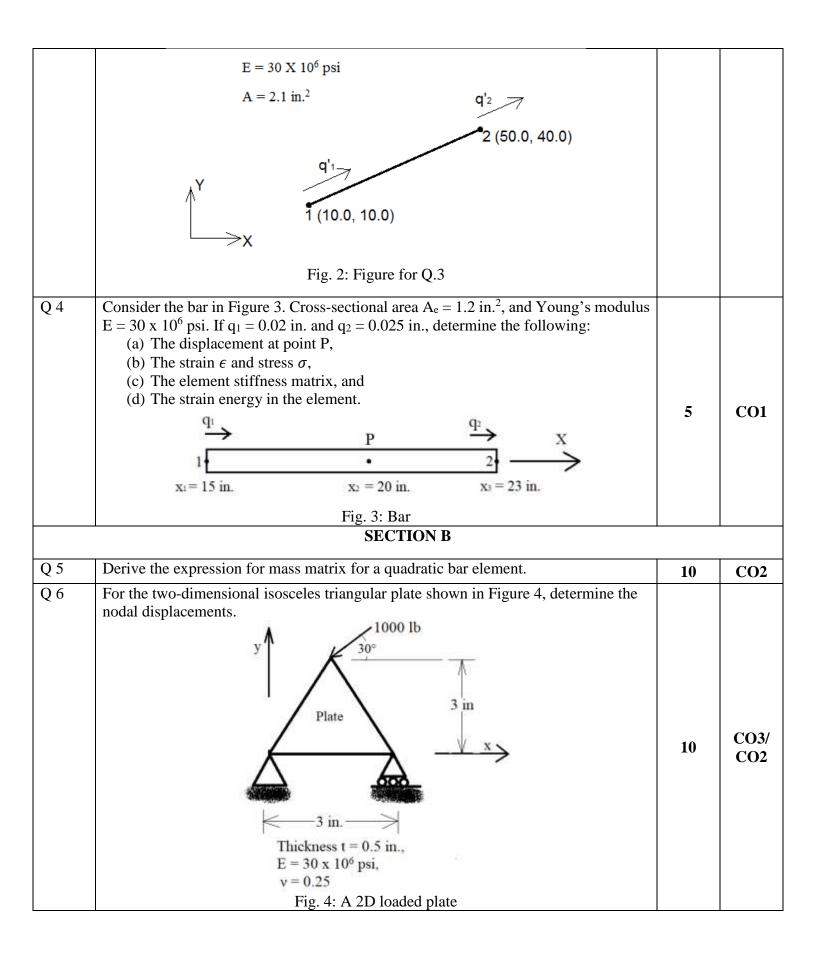
Name:

Enrolment No:


UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Finite Element AnalysisSemester: VIIProgram: B.Tech. Mechanical Engineering (Core & Specialization, International students)Time 03 hrs.Max. Marks: 100Course Code: ASEG 483Pages: 04

Instructions: Assume any missing data.

SECTION A

S. No.		Marks	CO
Q 1	For the triangular element shown in Figure 1, obtain the strain-displacement relation matrix B and determine the strains ϵ_x , ϵ_y and γ_{xy} . $ \begin{array}{c} q_1 = 0.001 & q_2 = -0.004 \\ q_3 = 0.002 & q_6 = 0.002 \\ q_5 = -0.002 & q_6 = 0.005 \\ \hline q_1 = 0.002 & q_6 = 0.005 \\ \hline q_2 = -0.002 & q_6 = 0.005 \\ \hline q_1 = 0.002 & q_6 = 0.002 \\ \hline q_2 = -0.002 & q_6 = 0.005 \\ \hline q_1 = 0.002 & q_6 = 0.005 \\ \hline q_2 = -0.002 & q_6 = 0.005 \\ \hline q_1 = 0.002 & q_6 = 0.005 \\ \hline q_1 = 0.002 & q_6 = 0.005 \\ \hline q_2 = -0.002 & q_6 = 0.005 \\ \hline q_1 = 0.002 & q_6 = 0.002 & q_6 = 0.002 \\ \hline q_1 = 0.002 & q_6 = 0.002 & q_6 \\ \hline q_1 = 0.002 & q_6 = 0.002 & q_6 \\ \hline$	5	CO1
Q 2	Discuss the Hermite shape functions for a beam element.	5	CO1
Q 3	 Consider the truss element shown in Figure 2. The x-, y- coordinates of the two nodes are indicated in the figure. If q = [1.5, 1.0, 2.1, 4.3]^T x 10⁻² inch, determine the following: (a) the stress in the element, (b) the strain energy in the element. 	5	CO1

	OR		
	Develop the formulation for stiffness matrix for a four-node quadrilateral element.		
Q 7	Determine the natural frequencies and mode shapes for steel bar shown in Figure 5.		
	400 mm ->< 600 mm ->		
		10	CO3
	Aluminium Steel		
	$E_1 = 70 \text{ X}10^9 \text{ N/m}^2$ $E_2 = 200 \text{ X} 10^9 \text{ N/m}^2$		
	$A_1 = 700 \text{ mm}^2$ $A_2 = 1000 \text{ mm}^2$		
	Fig. 5: A stepped bar		
Q 8	Discuss the equilibrium equations for a three-dimensional body occupying a volume	10	CO1
	V and having a surface S.	20	001
	SECTION-C		
Q 9	(a) A plate in the form of a sector is shown in Fig. 6. Inner radius (OD) of the plate is 30 cm and the outer radius (OC) of the plate is 35 cm. Perform the meshing of the plate using four CST elements and determine the B matrices and element load vectors. Determine the stiffness matrix for any one element. Specify the order of assembled global stiffness matrix. The plate is fixed at end CD. Specify the boundary conditions. Take $E = 2 \times 10^{11} \text{ N/m}^2$, $v = 0.3$ and thickness of plate, $t = 1$ cm. $\alpha = 30 \text{ degree}$ $\theta = 30 \text{ degree}$ Fig. 6: A sector plate (Q. 9a)	20	CO4
	OR		

	(b) Determine the stresses in the 4 in. long bar in Fig. 7, using two linear (bar) elements. (Note: <i>x</i> in., <i>T</i> kips/in.)		
	$T = x^{2}$ $T = x^{2}$ $T \text{ per unit length}$ $A = 2 \text{ in.}^{2}$ $E = 30 \times 10^{6} \text{ psi}$ Fig. 7: Figure for Q. 9b		
Q 10	 For the truss shown in Fig. 8, a horizontal load of P = 4000 lb is applied in the x-direction at node 2. (a) Write down the element stiffness matrix k for each element. (b) Assemble the K matrix. (c) Using the elimination approach, solve for Q. (d) Evaluate the stress in elements 2 and 3. (e) Determine the reaction force at node 2 in the y-direction. 		
	$\begin{array}{c} 4 \\ \hline 4 \\ \hline 3 \\ \hline 3 \\ \hline 2 \\ 40 \text{ in.} \\ \hline 2 \\ \hline 40 \text{ in.} \\ \hline 2 \\ \hline 1 \\ \hline 1$	20	CO3
	$A = 1.5 \text{ in.}^3 \text{ for each member}$ Fig. 8: Truss		