

	(or) (b) A Bell-Coleman refrigerator operates between pressure limits of 1 bar and 8 bar. Air is drawn from the cold chamber at 9 deg. C, compressed and then it is cooled to 29 deg. C before entering the expansion cylinder. Expansion and compression follow the law $\mathrm{pv}^{1.35}=$ constant. Calculate the theoretical COP of the system. For air take $\gamma=1.4, \mathrm{C}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.							
Q 7	An air-water vapour mixture enters an air-conditioning unit at a pressure of $1 \mathrm{bar}, 38$ deg. C DBT, and a relative humidity of 75%. The mass of dry air entering is $1 \mathrm{~kg} / \mathrm{s}$. The air-vapour mixture leaves the air conditioning unit at 1 bar, 18 deg. C, 85% relative humidity. The moisture condensed leaves at 18 deg. C. Determine the heat transfer rate for the process.						10	CO 5
Q 8	The atmospheric conditions are 32 deg. C and specific humidity of $13.4 \mathrm{~g} / \mathrm{kg}$ of air. Determine: (i) Partial pressure of vapour (ii) Relative humidity (iii) Dew point temperature. Atmospheric pressure $=758 \mathrm{~mm} \mathrm{Hg}$.						10	CO 4
Q 9	What are the functions of a compressor in a refrigeration system? Explain briefly about reciprocating compressor and centrifugal compressor with the help of neat diagram?						10	CO 1
SECTION-C								
Q 10	(a) Explain about the following unitary central systems: (i) Induction units (ii) Allair high velocity systems (b) Design an air conditioning plant for a small office room for the following winter conditions: Outdoor conditions: 14 deg. C DBT and 10 deg. C WBT Required conditions: 20deg. C DBT and 60% R.H Amount of air circulation: 0.30 cubic. $\mathrm{m} / \mathrm{min} /$ person Seating capacity of the office: 60 The required condition is achieved first by heating and then by adiabatic humidification. Determine the following: (i) Heating capacity of the coil in kW and the surface temperature required if the by-pass factor of coil is 0.4 . (ii) The capacity of the humidifier. Solve the problem by using psychrometric chart.						20	CO 5
Q 11	(a) What is the function of a cooling tower? How does a natural draft tower differ from a mechanical draft tower?							

(b) A food storage locker requires a refrigeration system of $2400 \mathrm{~kJ} / \mathrm{min}$ capacity at an evaporator temperature of 263 K and a condenser temperature of 303 K . The refrigerant used is Freon-12 and sub-cooled by 6 deg. C before entering the expansion valve and vapour is superheated by 7 deg. C before leaving the evaporator coil. The compressor of refrigerant is reversible adiabatic. The refrigeration compressor is two cylinder single acting with stroke equal to 1.25 times the bore and operates at 1000 r.p.m. Determine (using thermodynamic tables of properties for Freon-12): (i) Refrigerating effect per kg. (ii) Mass of refrigerant to be circulated per minute. (iii) Theoretical piston displacement per minute. (iv)Theoretical power required to run the compressor in kW (v) Heat removed through the condenser per minute (vi) Theoretical bore and stroke of compressor. Take: Liquid specific heat $=1.235 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$, vapour specific heat $=$ $0.733 \mathrm{~kJ} / \mathrm{kg}$ K.

Properties of Freon-12:

Sat. Temp. K	Absolute pressure	Specific vol. of vapour $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$	Enthalpy (kJ/kg)		Entropy $(\mathrm{kJ} / \mathrm{kg} \mathrm{K})$	

(or)
(c) Write a short note on air cooled and water cooled condenser with the help of neat diagrams?
(d) The evaporator and condenser temperatures of 20 tonnes capacity freezer are 28 deg. C and 23 deg. C respectively. The refrigerant -22 is subcooled by 3 deg. C before it enters the expansion valve and is superheated to 8 deg. C before leaving the evaporator. The compression is isentropic. A six cylinder single acting compressor with stroke equal to bore running at 250 rpm is used. Determine: (i) Refrigerating effect/kg. (ii) Mass of the refrigerant to be circulated per minute. (iii) Theoretical piston displacement per minute. (iv) Theoretical power. (v) C.O.P. (vi) Heat removed through condenser.

