Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Principle of Reservoir Engineering Program: B.Tech – GSE/GIE Course Code: PTEG 334 Semester: 3rd Time 03 hrs. Max. Marks: 100

Instructions: Attempt all the questions.

SECTION A

S. No.	Statement of questions	Marks	СО
Q 1	How much tank oil exists in the following oil field? Area of field= 640 acres, Average sand thickness=20ft, Average porosity=20%, Connate water saturation, Sw=30% and formation volume factor for oil, Bo = 1.20	4	CO1
Q 2	Illustrate low shrinkage oil reservoir and volatile crude oil reservoir with the help of phase diagram.	4	CO1
Q 3	Calculate the porosity of a sandstone sample when the following information is available from the core analysis. Bulk Volume of sample = 8.1 cc Weight of dried crushed sample= 17.3 gm Sand grain density = 2.67 gm/cc	4	C01
Q 4	Determination of density of pure water. A connate water is known to be relatively pure and exists in the reservoir at 5000 psia and 200 °F. If it is assumed that the water is saturated with natural gas, what is the density of the water at formation volume factor of water is 1.0301 bbl/bbl and density of water at wellbore is 62.34 lb/cu ft.	4	CO2
Q 5	Calculate the specific gravity and the API gravity of a crude oil system with a measured density of 53 lb/ft^3 at standard conditions.	4	CO3
	SECTION B		
Q 6	Explain the following a. Klinkenberg Effect. b. Drainage and imbibition process.	10	C01
Q 7	Derive an expression for the steady state linear flow of incompressible fluid. Assume that only single fluid phase is flowing under isothermal condition. 	10	CO4

Q 8	A gas reservoir has the following gas composition, the initial reservoir pressure and temperature are 3000 psi and 180 ⁰ F respectively. Determine apparent molecular weight (MWa), specific gravity, Gas formation volume factor, bbl/scf, pseudo-critical pressure, and pseudocritical temperature of the gas.						
Q 9	Components	Mole fraction	Tci, [°] R	Pci, psi			
	Components	0.8612	343	673			
	C ₂	0.0591	550	708		10	CO4
	C ₃	0.0358	666	617			
	C4	0.0172	766	550			
	C5	0.0050	846	490			
	CO ₂	0.0010	548	1070			
	N ₂	0.0207	227	492			
	Explain the different types of reserve estimation methods in detail.						
X '	OR With the help of material balance equation, derive an expression of initial oil in place for the solution gas drive reservoir.					10	CO3
			SECTION-C				
Q 10	help of their phase a. Black Oil	e diagram Reservoir e Gas Reservoir Reservoir	of reservoirs and	d their characteristics	with the	20	C03
Q 11	What is the equiv thickness under the			eries, having equal f	ormation		

A = 1060 acresh = 54 ft. $T = 164^{\circ}\text{F}$

Calculate the gas initially in place from the MBE.

Time t	Reservoir pressure	Z	Cumulative production
(years)	(psia)	Factor	Gp (MMMscf)
0	1798	0.869	0
0.5	1680	0.870	0.96
1	1540	0.880	2.12
1.5	1428	0.890	3.21
2	1335	0.900	3.92