Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Applied Numerical Methods Program: B. Tech. EE Course Code: MATH 306 Semester: VII Time 03 hrs. Max. Marks: 100

**Instructions:** All questions are compulsory. Internal choice is visible in the question(s). Calculator is allowed.

| SECTION A |                                                                                                                                                                                                    |          |              |                           |                   |                |       |     |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|---------------------------|-------------------|----------------|-------|-----|
| S. No.    |                                                                                                                                                                                                    |          |              |                           |                   |                | Marks | CO  |
| Q 1       | Write general form of a second order linear Partial Differential Equation. Classify it in Parabolic, Elliptic and Hyperbolic equations.                                                            |          |              |                           |                   | 4              | CO3   |     |
| Q 2       | Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Simpson's $\frac{3}{8}$ rule taking $h = \frac{1}{6}$ .                                                                                             |          |              |                           |                   | 4              | CO4   |     |
| Q 3       | Find a positive value of $(17)^{\frac{1}{3}}$ correct to four decimal places by Newton-Raphson method.                                                                                             |          |              |                           |                   | 4              | CO1   |     |
| Q 4       | Using Lagrange's fo<br>y = f(x) which has fo<br>x:<br>y:                                                                                                                                           |          | -            | 1 the value of<br>10<br>9 | y for $x = 9.5 f$ | for a function | 4     | CO4 |
| Q 5       | Prove that $e^x = \left(\frac{\Delta^2}{E}\right)e^x \frac{Ee^x}{\Delta^2 e^x}$ , where symbols have their usual meanings.                                                                         |          |              |                           |                   |                | 4     | CO4 |
| SECTION B |                                                                                                                                                                                                    |          |              |                           |                   |                |       |     |
| Q 6       | Use Euler's modified method to compute y for x = .05 and x = 0.1 given $\frac{dy}{dx} = x + y$<br>with initial condition $x_0 = 1$ , $y_0 = 1$ . Give the result correct to two places of decimal. |          |              |                           |                   | 10             | CO2   |     |
| Q 7       | Find the first derivative of the function tabulated below at the point $x = 1.1$ , using numerical differentiation.                                                                                |          |              |                           |                   |                |       |     |
|           | x<br>f(x)                                                                                                                                                                                          | 1.0<br>0 | 1.2<br>.1280 | 1.4<br>.5440              | 1.6<br>1.2960     |                | 10    | CO4 |

| Q 8   | -                                                                                                                                                                                                                                                                                                                                                                                                                     | terpolation for              | des $h^{\circ}$ above the horizon is polation formula, find the |               | CO4        |    |     |     |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------|---------------|------------|----|-----|-----|
|       | H                                                                                                                                                                                                                                                                                                                                                                                                                     | 220                          | 24 <sup>0</sup>                                                 | 260           | 280        |    | 10  | 04  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | 2'10".2                                                         |               | 1 49 .2    |    |     |     |
| Q 9   | Find a positive real root of $x - cosx = 0$ between 0 and 1 by regula - falsi method correct up to 2 decimal places.<br><b>OR</b><br>Apply Graeffe's root squaring method to solve the equation $x^3 - 8x^2 + 17x - 10 = 0$ , squaring twice.                                                                                                                                                                         |                              |                                                                 |               |            |    | 10  | CO1 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | SEC                                                             | TION-C        |            |    |     |     |
| Q 10A | Solve the following equations by Gauss Seidel iteration method correct up to 2 decimal places.<br>20x + y - 2z = 17; $3x + 20y - z = -18$ ; $2x - 3y + 20z = 25$                                                                                                                                                                                                                                                      |                              |                                                                 |               |            | 10 | CO1 |     |
| Q 10B | The motion of a damped spring- mass system shown in the following figure is described<br>by the differential equation $m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = 0$ , where x is the displacement from<br>the equilibrium position (m), t is time in seconds, m=10 kg is mass, and c is the damping<br>coefficient which takes values 5 (under damped) and 40 (critically damped). The spring<br>constant k =40 N/m. |                              |                                                                 |               |            |    | 10  | CO2 |
| Q 11  | Solve $u_{xx} + u_{yy}$<br>u(0, y) = 0; u(4)<br>h = k = 1. (Obt                                                                                                                                                                                                                                                                                                                                                       | y = 0 in 0<br>(4, y) = 8 + 2 | $\frac{1}{2} \le x \le 4, \ 0$<br>y; $u(x, 0)$                  | $= x^2/2$ and | u(x,4) = x |    | 20  | СОЗ |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | OR                                                              |               |            |    |     |     |

| Using Crank – Nicholson method, solve $u_{xx} = 16 u_t$ , $0 < x < 1$ , $t > 0$ given |  |
|---------------------------------------------------------------------------------------|--|
| u(x,0) = 0, u(0,t) = 0 and $u(1,t) = 50t$ . Compute u for two steps in t direction    |  |
| tacking $h = \frac{1}{4}$ .                                                           |  |
|                                                                                       |  |