

Q 8	The mean atmospheric refraction R, for a star at various altitudes h° above the horizon is given in the table below. Using forward difference interpolation formula, find the refraction for a star at an altitude of 23° above the horizon.	10	CO4
Q 9	Find a positive real root of $x-\cos x=0$ between 0 and 1 by regula - falsi method correct up to 2 decimal places. OR Apply Graeffe's root squaring method to solve the equation $x^{3}-8 x^{2}+17 x-10=0$, squaring twice.	10	$\mathrm{CO1}$
SECTION-C			
Q 10A	Solve the following equations by Gauss Seidel iteration method correct up to 2 decimal places. $20 x+y-2 z=17 ; 3 x+20 y-z=-18 ; 2 x-3 y+20 z=25$	10	CO1
Q 10B	The motion of a damped spring- mass system shown in the following figure is described by the differential equation $m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=0$, where x is the displacement from the equilibrium position (m), t is time in seconds, $\mathrm{m}=10 \mathrm{~kg}$ is mass, and c is the damping coefficient which takes values 5 (under damped) and 40 (critically damped). The spring constant $\mathrm{k}=40 \mathrm{~N} / \mathrm{m}$. The initial velocity is zero and the initial displacement $x=1 \mathrm{~m}$. Solve this system and compare the displacements at $\mathrm{t}=1 \mathrm{~s}$ for under damped as well as critically damped conditions with step size $\mathrm{t}=0.5 \mathrm{~s}$.	10	CO 2
Q 11	Solve $u_{x x}+u_{y y}=0$ in $0 \leq x \leq 4,0 \leq y \leq 4$ with the given conditions $u(0, y)=0 ; u(4, y)=8+2 y ; \quad u(x, 0)=\mathrm{x}^{2} / 2$ and $\quad u(x, 4)=x^{2} \quad$ by taking $h=k=1$. (Obtain the result correct to one place of decimal.) OR	20	$\mathrm{CO3}$

| | Using Crank - Nicholson method, solve $u_{x x}=16 u_{t}, 0<x<1, t>0$ given
 $u(x, 0)=0, u(0, t)=0$ and $u(1, t)=50 t$. Compute u for two steps in t direction
 tacking $h=1 / 4$. | |
| :--- | :--- | :--- | :--- |

