Name:							
Enrolm	ent No:	UPES					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES							
Course	End Semester Examination, Deceml e: Satellite Communication	ber 2019 Semester:	VII				
	um: B. Tech (EE & BCT)	Time: 03 hrs.					
_	e Code: ELEG 307	Max. Mar	Max. Marks: 100				
	ctions: Attempt all question						
Instruc							
Diagrams must be neat and clean Radius of earth at equator = 6400×10^3 m.							
	Gravitational constant = 6.67×10^{-11} m ³ kg ⁻¹ s ⁻²						
	Velocity of EM wave = 3×10^8 m s ⁻¹						
SECTION A							
	SECTION A						
S. No.			Marks	CO			
Q 1	Briefly describe the process (with suitable block diagram) of						
	baseband signal from earth station to satellite in space.		5	CO1			
Q 2	Comment on the suitable choice of digital modulation te	echnique employed in					
	satellite communication.	mmunication. 5		CO3			
Q 3	Calculate the time period of a satellite in geo stationary orbit .		5	CO4			
Q 4	The earth station/ DTH antenna is titled toward which direction	n in Sydney and why?	_	~~~			
			5	CO2			
SECTION B							
Q 5	Write the formula of Kepler laws of motion with respect to a	geo stationary satellite					
	along with the trajectory of the satellite.						
	From the suitable formula, calculate the total time taken by O	biter section of					
	Chandrayaan –II to complete one revolution of the Moon. The		10	CO3			
	100 km and the orbit is circular.	<u> </u>					
	Mass of Moon is 7.35×10^{22} kg and Radius of Moon = 1700 km						

Q 6	Describe the various stages in the placement of a IRS satellite from the launching			
	site to the desired geo stationary orbit. State with valid reason the choice of launch	10	001	
	site and launch vehicle.	10	CO1	
Q 7	Briefly describe the operation of a single stage transponder system . Illustrate the			
	transponder link with the help of suitable diagram.		CO2	
Q 8	What is satellite eclipse ? Calculate the total time of the eclipse and also the duration			
-	of its starting and ending when there is Autumn in India.		CO4	
	SECTION C			
	SECTION-C			
Q 9	Compute the uplink C/N of a satellite with the following specification.			
	Satellite transmitted power $=$ 120 W			
	Gain of the transmitted antenna $=$ 18 dB			
	Gain of the received earth antenna $=$ 20			
	Transponder bandwidth $= 500 \text{ MHz}$			
	Uplink frequency = 14 GHz	20	CO3	
	Boltzmann constant $= -226 dB$			
	Noise Temperature $= 5K$			
	Antenna alignment loss $= 2 W$			
	Feeding loss $= 2 dB$			
	Average Rain loss $= 3 dB$			
Q 10	A satellite is revolving over the equator in an elliptical path around the earth. If it			
	takes 6 hours in one complete revolution, then compute its altitude at the perigee			
	point and the apogee point and speed at the two points in kmph.			
	The perigee to apogee point distance $= 5:2$			
	The value of geo centric constant = 4×10^5 km ³ /s ² .			
	The value of geo centre constant $= 4 \times 10^{4}$ km /s. The radius of the earth equatorial plane = 6400 km		CO4	
	What be the velocity of the satellite if the two focus of the mentioned elliptical orbits			
	become one.			