Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Design of Hydraulic Structures

Programme: B Tech Civil Engineering

Semester: VII Time: 03 hrs. Course Code: CEEG 421

Max. Marks: 100

Instructions: Write your assumptions carefully and attempt all the questions

	Set A				
SECTION A					
S. No.		Marks	CO		
Q1.	Mention the only arch dam built in India. Explain its design criteria.	4	CO1		
Q2.	What are the limitations of the cylinder theory for the design of an arch dam?	4	CO2		
Q3.	Explain the Reservoir Leakage problem.	4	CO3		
Q4.	What is river meandering? What are its causes?	4	CO3		
Q5.	Differentiate between run-off-the-river scheme hydel plants and the storage reservoir hydel plants.	4	CO4		
	SECTION B	I			
Q6.	 A storage hydel plant with an installed capacity of 5000 kW operates at 35% load factor when it serves as a peak load station: a) What should be the minimum discharge in the stream, so that it may serve as a base load station? The plant efficiency may be assumed to be 100% when working under a head of 20m. b) Also calculate the maximum load factor of the plant when the discharge in the stream is 50 cumecs. 	10	CO4		
Q7.	Explain the design and specifications of river training method used for bank protection. Draw a neat sketch also.	10	CO3		
Q8.	Determine the average daily water requirements to supply the load and storage required to produce peak load for a hydro-power plant working at 42.47m head and 80% efficiency, given the following data: Time (h) Load (MW) 0-4 30 4-8 40 8-12 150 12-16 80 16-20 110	10	CO4		

	20-24 10		
	OR		
Q8.	Explain the concept of water hammer with reference to hydel plants. Suggest the measures to counteract water hammer.	10	CO4
Q9.	The yearly rainfall data for a proposed reservoir for 35 years is given below. Compute 75% and 60% dependability. Year Annual Rainfall (cm) Year Annual Rainfall (cm) 1956 98 1978 208 1957 100 1979 114 1958 101 1980 104 1959 99 1981 120 1960 85 1982 108 1961 112 1983 102 1962 116 1984 80 1963 78 1985 109 1964 160 1986 122 1965 66 1987 115 1966 184 1988 140 1967 90 1989 138 1969 118 1990 60 1971 92 1971 92 1972 96 1973 93 1974 88 1975 94 1975 94 1976 107 1977 110 1970<	10	CO3
Q10.	An elementary profile of a concrete gravity dam of triangular section has a maximum		
¥10.	 All elementary prome of a concrete gravity dam of drangdrar section has a maximum water level upto the top of the dam which is 50m high and the d/s slope has a batter of 0.8H: 1V. There is no tail water. Analyze the dam section and determine: a) Factor of safety against overturning b) Factor of safety against sliding c) Whether there is tension or not at the base d) Maximum compressive stress within the allowable crushing strength of concrete (1000 kN/m²) 	20	CO1

	Assume:		
	Coefficient of friction between masonry and foundation material $= 0.67$		
	Unit Weight of concrete = 24 kN/m ³		
	Uplift pressure intensity coefficient acting on 100 % area = 0.5		
	OR		
Q10.	A concrete gravity dam has Max. Reservoir level at 200m, base level at 115m and top level as 205m. The upstream face is vertical and the downstream face batter starts at 199m and is 1H: 1.5V. There is no tail water level. The central line of the drainage gallery starts at 8m from the u/s face. Analyze the dam for safety. Include the earthquake action	20	CO1
Q11.	Design an ogee spillway for a concrete gravity dam having the d/s face sloping at a slope of 0.7H: 1V. The design discharge is 10000 m ³ /s. The height of the spillway crest is kept at RL 200.0 m. The average river bed level at the site is 100 m. The spillway length consists of 6 spans having a clear width of 10m each. Assume the values of K_a and K_p . Calculate atleast 10 coordinates for d/s profile and atleast 5 coordinates for u/s profile.	20	CO2