
Name:							
Enrolme	Enrolment No: UNIVERSITY WITH A PURPOSE						
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019							
Course: Finite Element MethodsSemester: VProgram: B. Tech Aerospace EngineeringTime 03 hrs.							
No. of p	Code: ASEG 417 Max. Marks ages:04 ions: Make use of sketch/plots to elaborate your answer. All sections are compulso						
mstruct	SECTION A (20 marks)	<u>1 y</u>					
S. No.		Marks	CO				
Q 1	Consider the horizontal BAR element with cantilevered support conditions. Is the stiffness matrix singular (i.e. can you solve for the displacement)? $A, E \downarrow F$	[04]	CO1				
Q 2	Given the following stress tensor						
	 σ = ¹⁰ 20 30 ²⁰ 40 50 ³⁰ 50 60 ³⁰ I. What is the value of von Mises stress? II. Propose two other stress tensor that will have the same von Mises stress? III. Do all stress tensors having the same von Mises stress also have the same principle stresses? IV. Do all stress tensors having the same principle stresses also have the same von Mises stress? 	[04]	CO2				
Q 3	Solve the following equation using a two-parameter trial solution by the Rayleigh- Ritz method, $\frac{dy}{dx} + y = 0, \qquad y(0) = 1$	[04]	CO2				
Q 4	Consider the spring-mounted bar as shown in the figure. Solve for the displacements of points P and Q using the bar elements (assume $AE = constant$).	[04]	CO2				
Q 5	Define types of elements with proper schematic for different dimensions of space. Give examples for each type of elements.	[04]	CO1				

	SECTION B (40 marks)		
Q 6	Given the four-dimensional vectors $x = \begin{bmatrix} 2\\4\\-8 \end{bmatrix}, \qquad y = \begin{bmatrix} 21\\-5\\7\\-5 \end{bmatrix}$ (a) Compute the Euclidean norms and lengths of x and y ; (b) Compute the inner product (x , y); (c) Verify that the inequalities $ (\mathbf{x}, \mathbf{y}) \le \mathbf{x} \mathbf{y} $, and $ \mathbf{x} + \mathbf{y} \le \mathbf{x} + \mathbf{y} $ holds; (d) Normalize x and y to unit length	[10]	CO1
Q 7	A 3 node rod element has a quadratic shape function matrix: $N = \langle 1 - \frac{3x}{L} + \frac{2x^2}{L^2}, \frac{4x}{L} - \frac{4x^2}{L^2}, -\frac{x}{L} + \frac{2x^2}{L^2} \rangle$ For $L = 1 m, E = 200 \times 10^9$ Pa, $u_1 = 0, u_2 = 5 \times 10^{-6}m, u_2 = 15 \times 10^{-6}m$ Find: a. The displacement u at $x = 0.25 m$. b. The strain as a function of x . c. The strain at $x = 0.25 m$. d. The stress at $x = 0.25 m$. E, A ₁ \downarrow	[10]	CO4
Q 8	Consider a simply supported beam under uniformly distributed load q_0 as shown in figure. For the deformation $v(x)$, we have	[10]	CO3

Q 9	Considering the following force displacement relationship,		
	$\mathbf{f} = \mathbf{K}\mathbf{u} = \begin{bmatrix} 20 & 10 & -10 & 0 & -10 & -10 \\ 10 & 10 & 0 & 0 & -10 & -10 \\ -10 & 0 & 10 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 & -5 \\ -10 & -10 & 0 & 0 & 10 & 10 \\ -10 & -10 & 0 & -5 & 10 & 15 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0.4 \\ -0.2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ 0 \\ 1 \\ 2 \\ 1 \end{bmatrix}$		
	Draw a free body diagram of the nodal forces acting on the free-free truss structure and verify that this force system satisfies translational and rotational (moment) equilibrium.	[10]	CO4
	OR		
	Solve the differential equation for a physical problem expressed as $\frac{d^2y}{dx^2} + 100 = 0$		
	$0 \le x \le 10$ with boundary conditions as y(0)=0 and y(10)=0 using		
	(i) Point collocation method(ii) Sub domain collocation method		
	SECTION-C (40 marks)		
Q 10	Derive the Euler-Lagrange equation for a functional given by,		
	$I(u) = \int_{a}^{b} F\left(u, \frac{du}{dx}, x\right) dx$		
	Thus, obtain the corresponding Euler-Lagrange for the functional given below,	[20]	CO4
	$I = \frac{1}{2} \int_0^L \left[\propto \left(\frac{dy}{dx}\right)^2 - \beta y^2 + ryx^2 \right] dx - y(L)$		

