

Q 9	Define Kepler Laws? The period of revolution of the earth about the sun is $\mathbf{3 6 5 . 2 5 6}$ days. The semi-major axis of the earth's orbit is $\mathbf{1 . 4 9 5 2 7 * 1 0}{ }^{11} \mathrm{~m}$. The Semi-major axis of the orbit of Mars is $\mathbf{2 . 2 7 8 3} \boldsymbol{*} \mathbf{1 0}^{\mathbf{1 1}} \mathbf{~ m}$. Calculate the period of Mars. (Or) At perigee, kinetic energy and potential energy can be written as (K.E)p and (P.E)p and $\lambda 1=($ K.E $)$ p (P.E)p , whereas at apogee: kinetic energy is (K.E)a potential energy is (P.E)a and $\lambda 2=(\mathrm{K} . \mathrm{E}) \mathrm{a}$ (P.E)a, which of the following relation between $\lambda 1$ and $\lambda 2$ is true? Justify your answer.	10	CO1
SECTION-C			
Q 10	At the end of a rocket launch of a space vehicle, the burnout velocity is $\mathbf{9 k m} / \mathbf{s}$ is a direction due north and 3^{0} above the local horizontal. The altitude above the sea level is $\mathbf{5 0 0} \mathbf{~ m i}$. The burnout point is located at the $\mathbf{2 7 ^ { 0 }}$ parallel above the equator. Calculate and plot the trajectory of the space vehicle. Also, Derive the equation of the motion of the space vehicle.	20	CO 2
Q 11	Design a closed loop system using linear state variable feedback for the open loop system shown in Figure 1. The desired dominant complex poles of the closed loop system must have a damping ratio of not less than $\mathbf{0 . 4 5}$. In addition, in response to a unit step input the peak overshoot of the response of the closed loop system must not exceed $\mathbf{2 0}$ per cent and must not occur later than $\mathbf{0 . 1 5} \mathbf{s}$ after the step has been applied. The complete response must have settled in $\mathbf{0 . 4} \mathbf{~}$. Figure (1) (a) Draw a root locus diagram for the aircraft system of Figure 1. (b) If $\boldsymbol{A}=\mathbf{0 . 0 4}$ calculate the values of the poles of the system (Or) A satellite transfer function is $\mathbf{G}(\mathbf{s})=\frac{\boldsymbol{K}\left(s^{2}+6 s+25\right)}{\boldsymbol{s}(\boldsymbol{s}+\mathbf{1})(\boldsymbol{s}+2)}$ i) Determine the value of K , which gives continuous oscillation and the frequency of oscillation. ii) Determine the value of K corresponding to a dominant closed loop pole with damping ratio 0.7 iii) Draw the root locus plot for unity feedback having forward path transfer function	20	CO 4

