Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2019

Course: Orbital Mechanics Semester: VII
Program: B. Tech ASE & ASE+AVE Time 03 hrs.

Course Code: ASEG 482 Max. Marks: 100

SECTION A					
S. No.	Questions	Marks	CO		
Q 1	What is geosynchronous orbit? How it is different from Polar orbit?	4	CO1		
Q 2	Define Prograde and Retrograde Orbit.	4	CO2		
Q 3	Draw and explain the satellite attitudes control block diagram?	4	CO4		
Q 4	List out the types of Reentry in details.	4	CO3		
Q 5	Explain the Perturbations due to Non-Spherical Earth. Justify your answer.	4	CO2		
	SECTION B				
Q 6	A satellite is in a circular parking orbit with an altitude of 200 km . Using a one-tangent burn, it is to be transferred to geosynchronous altitude using a transfer ellipse with a semi-major axis of 30,000 km . Calculate the total required velocity change and the time required to complete the transfer.	10	CO3		
Q 7	 a) The space shuttle is in an altitude of 250 km in a circular orbit then calculates the period of the orbit and its speed. b) Radius of earth=6.378 X 10⁸ m, g=9.81 m/sec², height of satellite=35.9 X 10⁶ m, θ=10.5° to equator. How much velocity is required to make the orbit of satellite equatorial? 	05+05	CO2		
Q 8	A satellite is in an orbit with a semi-major axis of 7,500 km , an inclination of 28.5 degrees , and an eccentricity of 0.1 . Calculate the J2 perturbations in longitude of the	10	CO3		

ascending node and argument of perigee. Also Discusses the orbital perturbation

Q 9	Define Kepler Laws? The period of revolution of the earth about the sun is 365.256 days. The semi-major axis of the earth's orbit is $1.49527*10^{11}$ m. The Semi-major axis of the orbit of Mars is $2.2783*10^{11}$ m. Calculate the period of Mars. (Or) At perigee , kinetic energy and potential energy can be written as (K.E)p and (P.E)p and $\lambda 1 = (K.E)p$ (P.E)p , whereas at apogee: kinetic energy is (K.E)a potential energy is (P.E)a and $\lambda 2 = (K.E)a$ (P.E)a , which of the following relation between $\lambda 1$ and $\lambda 2$ is true? Justify your answer.	10	CO1
	SECTION-C		
Q 10	At the end of a rocket launch of a space vehicle, the burnout velocity is 9km/s is a direction due north and 3 ⁰ above the local horizontal. The altitude above the sea level is 500 mi . The burnout point is located at the 27 ⁰ parallel above the equator. Calculate and plot the trajectory of the space vehicle. Also, Derive the equation of the motion of the space vehicle.	20	CO2
Q 11	Design a closed loop system using linear state variable feedback for the open loop system shown in Figure 1. The desired dominant complex poles of the closed loop system must have a damping ratio of not less than 0.45 . In addition, in response to a unit step input the peak overshoot of the response of the closed loop system must not exceed 20 per cent and must not occur later than 0.15 s after the step has been applied. The complete response must have settled in 0.4 s. Figure (1) (a) Draw a root locus diagram for the aircraft system of Figure 1. (b) If $A = 0.04$ calculate the values of the poles of the system (Or) A satellite transfer function is $G(s) = \frac{K(s^2 + 6s + 25)}{s(s+1)(s+2)}$ i) Determine the value of K, which gives continuous oscillation and the frequency of oscillation. ii) Determine the value of K corresponding to a dominant closed loop pole with damping ratio 0.7 iii) Draw the root locus plot for unity feedback having forward path transfer function	20	CO4