Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Digital Avionics Program: B. Tech ASE+AVE Course Code: AVEG 433 Semester: VII Time 03 hrs. Max. Marks: 100

Instructions: Make use of *sketches/plots* to elaborate your answer. Brief and to the point, answers are expected. The Question paper has three sections: Section A, B and C, Section B and C having internal choices. SECTION A

SECTION A		
S. No. Questions	Marks	CO
Q 1 Write shorts note on fiber optic Data buses DOD-STD 1773	4	CO3
Q 2 What are the components of feedback control system and types of feedback (FB) is employed in control systems. Explain the Effects of FB in Automatic Flight Control Systems (AFCS).	4	CO2
Q 3 What are the major factors consider designing the Helmet Mounted Display (HMD) of Fighter Aircraft.	4	CO4
Q 4 Explain the various role in civil and military aircraft.	4	CO1
Q 5Discuss the Dead-Reckoning (DR) Navigation system with suitable examples	4	CO5
SECTION B		
For the following clock pulse explain the Manchester Bi-Phase coding and find the Data. Clock Manchester (as per G.E. Thomas) Manchester (as per IEEE 802.3) Also, state the Data buses of MIL-STD 1533B Military Aircraft protocols.	10	CO3

Q 7	Write the MATLAB programming for vanguard missile control system, amplifier gain $S_{(amp)} = 10$ $\theta_i \varepsilon S_{(amp)} \varepsilon_{\sigma} 13.3(\varepsilon + 2.26) \delta_i Servo \delta Missile \theta_o$ Lead networkVanguard control system (rigid missile)TF (servo) $= \frac{2750}{(S^2 + 84S + 2750)};$ TF (Missile) $= \frac{-7.21}{(S+1.6)(s-1.48)}$	10	CO1
Q 8	If (set vo) $-(s^2+84s+2750)$, If (unsult) $-(s+1.6)(s-1.48)$ Find the following conversion: a) (132)10 to Binary b) (73.75)10 to Octal c) (137.21)8 to Decimal d) (C3A6)16 to Binary e) (82.25)10 to Hex equivalent	10	CO3
Q 9	 a) A transmitter uses a single error-correcting code for the message using even parity. The message received at the receiving end is 1110101. Check and correct the error. b) Find the required effective focal length <i>F</i>, Head up display (HUD) for civil aircraft TFOV of 20⁰ and a CRT diameter of 50 mm. (Or) a) The response of a servomechanism is c(t) = 1+ 0.2 e^{-60t} - 1.2 e^{-10t} when subject to a unit step input. Obtain an expression for the system b) The following equation S⁴ +0.811S³ + 1.32S² +0.0102S +0.00695 = 0. Find the damping Ratio and undamped natural frequency for i) Phugoid oscillation ii) Short-Period oscillation 	10	CO4

	SECTION C		
Q 10	How GPS system works? A satellite transmit a signal at the nominal GPS time (by its clock) of t_{sv} , However, the clock corrections broadcast in the data stream indicates		
Q IO	corrections Δt_{sv} , to be added to the satellite clock time. The signal is received by the	20	
	user at time $\Delta t_{u_{i}}$	20	CO5
	By the user clock, which has got an error indicated by t_{bias} , Write the range equations for the satellite which takes these into consideration. Show by a sketch how these factors affect the measured delay.		
	Convert the block diagram to signal flow graph and determine the transfer function using mason's Gain formula		
Q 11	$\begin{array}{c} R(s) + & V_{1}(s) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		
	(Or)		
	Reduce the block diagram shown in figure to a single block $\frac{C(s)}{R(s)}$	20	CO2
	$R(s) + G_1(s) + G_5(s) + G_6(s)$		
	$G_2(s)$		
	$\begin{array}{c} -2 \langle s \rangle \\ + \\ & & \\ & $		