Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Orbital Mechanics Program: B. Tech ASE & ASE+AVE Course Code: ASEG 482 Semester: VII Time 03 hrs. Max. Marks: 100

SECTION A					
S. No.	Questions	Marks	CO		
Q 1	What is geosynchronous orbit? How it is different from Polar orbit?	4	CO1		
Q 2	Define Prograde and Retrograde Orbit.	4	CO2		
Q 3	Draw and explain the satellite attitudes control block diagram?	4	CO4		
Q 4	List out the types of Reentry in details.	4	CO3		
Q 5	Explain the Perturbations due to Non-Spherical Earth. Justify your answer.	4	CO2		
	SECTION B				
Q 6	A satellite is in a circular parking orbit with an altitude of 200 km . Using a one-tangent burn, it is to be transferred to geosynchronous altitude using a transfer ellipse with a semi-major axis of 30,000 km . Calculate the total required velocity change and the time required to complete the transfer.	10	CO3		
Q 7	 a) The space shuttle is in an altitude of 250 km in a circular orbit then calculates the period of the orbit and its speed. b) Radius of earth=6.378 X 10⁸ m, g=9.81 m/sec², height of satellite=35.9 X 10⁶ m, θ=10.5° to equator. How much velocity is required to make the orbit of satellite equatorial? 	05+05	CO2		
Q 8	A satellite is in an orbit with a semi-major axis of 7,500 km , an inclination of 28.5 degrees , and an eccentricity of 0.1 . Calculate the J2 perturbations in longitude of the ascending node and argument of perigee. Also Discusses the orbital perturbation	10	CO3		

Q 9	Define Kepler Laws? The period of revolution of the earth about the sun is 365.256 days. The semi-major axis of the earth's orbit is 1.49527*10¹¹ m . The Semi-major axis of the orbit of Mars is 2.2783*10¹¹ m . Calculate the period of Mars. (Or) At perigee, kinetic energy and potential energy can be written as (K.E)p and (P.E)p and $\lambda 1 = (K.E)p$ (P.E)p, whereas at apogee: kinetic energy is (K.E)a potential energy is (P.E)a and $\lambda 2 = (K.E)a$ (P.E)a, which of the following relation between $\lambda 1$ and $\lambda 2$ is true? Justify your answer.	10	CO1
	SECTION-C		
Q 10	At the end of a rocket launch of a space vehicle, the burnout velocity is 9 km/s is a direction due north and 3^0 above the local horizontal. The altitude above the sea level is 500 mi . The burnout point is located at the 27^0 parallel above the equator. Calculate and plot the trajectory of the space vehicle. Also, Derive the equation of the motion of the space vehicle.	20	CO2
Q 11	Design a closed loop system using linear state variable feedback for the open loop system shown in Figure 1. The desired dominant complex poles of the closed loop system must have a damping ratio of not less than 0.45. In addition, in response to a unit step input the peak overshoot of the response of the closed loop system must not exceed 20 per cent and must not occur later than 0.15 s after the step has been applied. The complete response must have settled in 0.4 s. $ \frac{Amplifier}{A} = \frac{V(s)}{(s+5)} + \frac{Actuator}{(s+5)} + \frac{\delta_{R}(s)}{(s+5)} + \frac{(s+1)}{(s+2)} + \frac{1}{(s+5)} + \frac{f(s)}{(s+5)} + \frac{1}{(s+5)} + \frac{1}{(s+5)} + \frac{f(s)}{(s+5)} + \frac{1}{(s+5)} + \frac{f(s)}{(s+5)} + \frac{1}{(s+5)} + \frac{f(s)}{(s+5)} + \frac{1}{(s+5)} + \frac{1}{(s+$	20	CO4