

Q 7	An aqueous feed of A and $\mathrm{B}(400$ liter $/ \mathrm{min}, 100 \mathrm{mmol} \mathrm{A} / \mathrm{liter}$, and $200 \mathrm{mmolB} / \mathrm{liter})$ is to be converted to product in a plug flow reactor. The kinetics of the reaction is represented by $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{R},-\mathrm{r}_{\mathrm{A}}=200 \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}} \mathrm{mol} / \mathrm{liter} . \mathrm{min}$. Find the volume of reactor needed for 99.9% conversion of A to product.												(20)	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{CO} \end{aligned}$
Q 8	We are planning to operate a batch reactor to convert A into R. this is a liquid reaction, the stoichiometry is $\mathrm{A} \rightarrow \mathrm{R}$, and the rate of reaction is given in table below. How long must we react each batch for the concentration to drop from $\mathrm{C}_{\mathrm{A} 0}=1.3 \mathrm{~mol} / \mathrm{liter}$ to $\mathrm{C}_{\mathrm{Af}}=0.3 \mathrm{~mol} / \mathrm{liter}$?												20	$\mathrm{CO5}$
	$\mathrm{C}_{\mathrm{A}}, \mathrm{mol} / \mathrm{liter}$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0	1.3	2.0		
	$-\mathrm{r}_{\mathrm{A}}$, $\mathrm{mol} /$ liter.min	0.1	0.3	0.5	0.6	0.5	0.25	0.1	0.06	0.05	0.045	0.042		

