Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Sem Examination, December 2019

Course: Chemical Reaction Engineering Program: B. Tech APE GAS Time: 02 hrs. Semester: VII Code: CHEG331 Max. Marks: 100

Instructions: Answer all the questions of a section <u>at one place and in order</u>. Write legibly.

S. No.		Mar ks	CO
Q 1	Derive an expression for the concentration of reactant in the exit stream from a series of mixed reactors of different sizes. Assume that the reaction follows first order kinetics and the holding time in the i _{th} reactor is _{[j} .	10	CO1
Q 2	The elementary liquid phase reaction $A+B \rightarrow R+S$ is carried out in a plug flow reactor. For equimolar amounts of A and B ($C_{A0} = C_{BO} = 0.9 \text{ mol/lit}$), 94% conversion is achieved in it. If a CSTR, 10 times as large as the plug flow reactor, were arranged in series with the existing unit, which unit needs to be arranged first to enhance the production rate.	10	CO2
Q 3	A second order irreversible reaction is carried out in a single CSTR which results in 89% conversion of reactant A. If another identical CSTR is connected in series with the first one determine the percentage increase in conversion of the reactant.	10	CO3
Q 4	Derive the performance equation for recycle reactor.	10	CO4
Q 5	In an isothermal batch reactor 70% of a liquid reactant is converted in 13 min. What space time and space velocity are needed to effect this conversion in a plug flow reactor and in a mixed flow reactor?	10	CO1
Q 6	We plan to replace our present mixed flow reactor with one having double the volume. For the same aqueous feed (10 mol A/liter) and the same feed rate find the new conversion. The reaction kinetics are represented by $A \rightarrow R$, $-r_A = kC_A^{1.5}$ and present conversion is 70 %.	10	CO2
	SECTION-B (40 Marks)		

Q 7	An aqueous feed of A and B (400 liter/min, 100 mmol A/liter, and 200 mmolB/liter) is to be converted to product in a plug flow reactor. The kinetics of the reaction is represented by $A+B \rightarrow R$, $-r_A= 200 C_A C_B$ mol/liter.min. Find the volume of reactor needed for 99.9% conversion of A to product.											(20)	CO3 CO4	
Q 8	We are planning stoichiometry is react each batch C _A , mol/liter -r _A , mol/liter.min	$s A \rightarrow$	R, and	d the 1	rate of ation t	f reacti	on is gi	ven ir	table b	below. H	Iow long	g must we	20	CO5