Name: Enrolment No:					
	UNIVERSITY OF PETROL	EUM AND ENERGY STUD	IES		
		ination, December 2019			
Program	nme Name: B.Tech/ PSE	Semest	er : V		
0	Course Name : Electrical Measurement & Instrumentation Time		: 03 hrs.		
Course Code : EPEG 2004 Max. M				Aarks : 100	
Nos. of	page(s) : 2				
Instruct	ions: Attempt all the questions.				
	SEC	TION A			
S. No.			Marks	CO	
Q 1	Define a transducer. What is the difference between sensor and transducer? Name some of the active and passive transducers, which are used in the measurement of physical quantities.		(5)	CO2, CO3	
Q 2	Draw the block diagram of CRT. Write the function of each block and mention the applications.		(5)	CO1	
Q 3	 Present the comparative study of LED Describe the necessity of grounding. I grounding techniques. 		(2.5+2.5	CO1 CO2	
Q 4	Define the galvanometer constants. Present the constants.	e dynamic response using these intrinsic	(5)	CO2, CO4	
	SEC	TION B			
Q 5	 Compare and contrast a thermocoup temperature detector. State and explain the laws of thermocol 		(6+4)	CO2, CO5	
Q 6	 Describe the construction and working What are the limitations and advantage magnetic flowmeters? Briefly describe with a diagram as the measured by magnetic flowmeters. 	ges of measurement of liquids flow by	(5+2+3)	CO1, CO2	

Q 7	 Describe the attraction type and repulsion type moving iron instruments in brief. The Inductance of a moving iron ammeter is given by the expression: L = (12 + 5θ - 2θ²)μH Where, θ is the deflection in radians from the zero position, calculate: I. Spring Constant. II. The angular deflection of the pointer for a current of 10A if the deflection for a current of 5A is 30⁰. 	(5+5)	CO1, CO3
Q 8	Present the comparison of current and potential transformers. Describe how instrument transformer errors can be minimized. OR A 100/5A current transformer, at its rated load of 20VA, has an iron loss of 0.18W and a magnetizing current of 1.4A. It is supplying rated output to a meterhaving a ratio of resistance to reactance of 4. Calculate: A. Ratio Error B. Phase Angle	(10)	CO3
	SECTION-C		•
Q 9	 SECTION-C 1. Present the measurement scheme of an unknown inductance by Hay's Bridge. Draw the circuit diagram and derive the expression for unknown parameters. 2. In a four arm bridge network (shown in fig:1), the arm AB consists of an imperfect condenser, BC and CD are non- reactive resistances of 1000 Ω each and DA is a standard capacitor of 0.0115µF capacitance in series with a resistance of 140 Ω. If the bridge is balanced for frequency ω = 7500 radians/sec, find the shunt-less resistance and capacitance of the imperfect condenser. 		CO4

2. A	 Discuss the construction and working principle of a linear variable differential transformer (LVDT). Explain how the magnitude and direction of the displacement of core of an LVDT detected? Also mention its industrial applications. A simple electrical strain gauge of resistance 120Ω and having a gauge factor of 2 is bonded to steel having an elastic limit stress of 400 MN/m² and modulus of elasticity is 200 GN/m². Calculate the change in resistance, Due to change in stress equal to 1/10 of the elastic range. Due to temperature of 20^oC if the material is advance alloy. The resistance temperature coefficient of advance alloy is 20x10⁻⁶/^oC. 	(10+10)	CO1, CO2, CO5
	Analyze the terms charge sensitivity and voltage sensitivity by describing the working principle of piezo-electric transducers and derive the expression for generated Emf. A capacitive transducer uses two quartz diaphragms of area 750 mm ² separated by a distance of 3.5mm. A pressure of 950 KN/m ² when applied to the top diaphragm produces a deflection of 0.6mm. The capacitance is 370 pF when no pressure is applied to diaphragms. Find the value of capacitance after the application of a pressure of 950 KN/m ² .		