Name:			
Enrolm	ent No: UPES		
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES		
~	End Semester Examination, December 2019		
	: Power Electronics and Drives (EPEG 3006) Semester: V nme: B. Tech (Mechatronics)		
Time: 0	: 100		
	tions: All Section are compulsory	. 100	
	SECTION A		
S. No.		Marks	СО
Q 1	How the secondary breakdown occurs in Power BJT? Show it on I-V characteristics of Power BJT.	4	CO1
Q 2	What are the control strategies used in DC-DC converters?	4	CO3
Q 3	What are the methods used for control the output voltage of inverter?	4	CO5
Q 4	Describe the different turn-on methods of SCR.	4	CO3
Q 5	Discuss the concept of electric drive. Illustrate your answer with example.	4	CO3
	SECTION B	<u> </u>	
Q 6	Explain the need of commutation in thyristor circuits. What are the different methods of commutation schemes? Discuss Class A commutation circuit with a neat schematic and waveforms.	10	CO4
Q 7	What is current limit control? How does it differ from TRC? Which of these control strategies is preferred over the other and why?	10	CO3
Q 8	Derive the basic performance equations for armature controlled DC motor. Sketch also the characteristics of this motor indicating the two regions of constant-torque mode and constant-power mode. Consider below circuit for analysis.	10	CO5

Q 9	What are the two main types of inverters? Distinguish between them explicitly. Explain the difference between line-commutated and force-commutated inverters. OR A single phase full converter, connected from 230 V, 50 Hz source, is feeding a load R= 25 Ω in series with a large inductance that makes the load current ripple free. For a firing angle 30°, calculate the input and output performance parameters of this converter. SECTION-C	10	CO3
	Sherion e		
Q 10 A Q 10 B	What is meant by step-up chopper? Explain its operation. Sketch the input voltage, input current, output voltage and output current waveforms. State the various assumption made. How can a step-up chopper be used for the regenerative braking of DC motors? Discuss with below circuit. $I_a \qquad L$ $I_a \qquad L$	12+8	CO5
0.11	phase full-converter fed DC drive.		
Q 11	An RL load with freewheeling diode is fed from single-phase supply through a thyristor. Derive an expression for load current in terms of supply voltage, frequency, R, L etc. For this thyristor-load combination, draw waveforms for load voltage, load current, source current and voltage across the thyristor. Hint: Consider below circuit	20	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CO4
	OR		
	A) Discuss with relevant waveform, class B commutation techniques employed for thyristor circuits.B) With neat characteristics curve explain DIAC and TRIAC operation. List out different condition under which DIAC and TRIAC are used.	10+10	