Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2019

Programme Name: B.Tech. Mechanical Semester : V

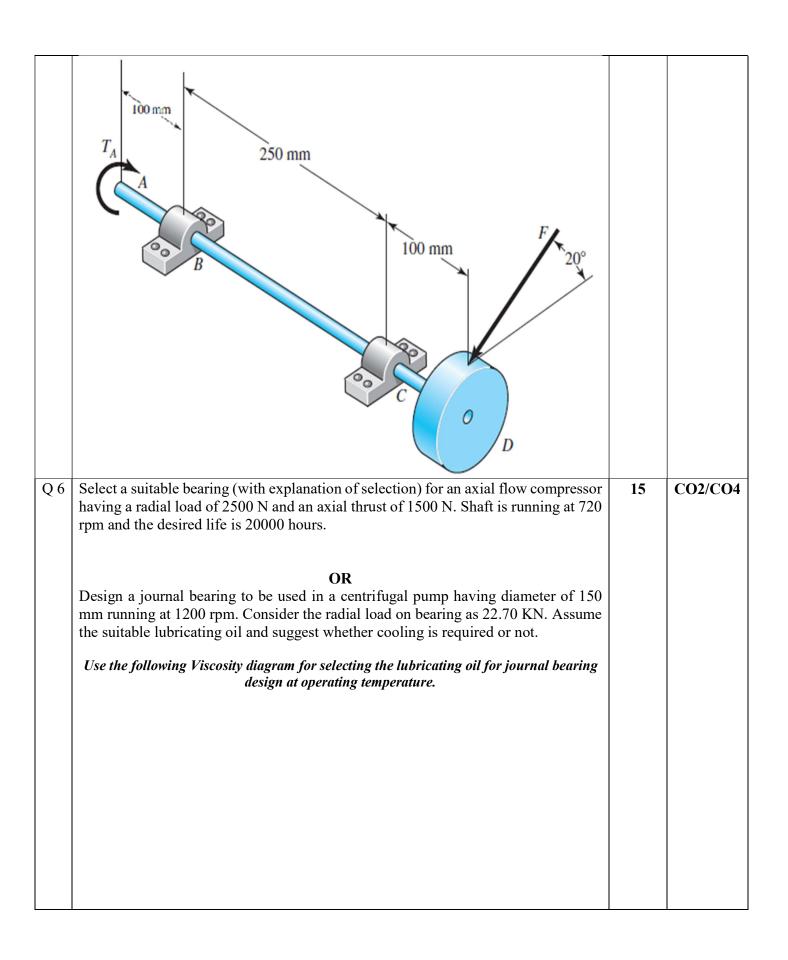
Course Name : Design of Machine Elements

Time: 03 hrs Max. Marks: 100

Course Code : MECH 3001

Nos. of page(s) : 3

Instructions: Read the questions carefully and attempt as per section. Use of Design Data handbook is


allowed. Assume suitable data if required/missing.

SECTION A (30)

Attempt all questions.

S. No.	Statement of Problem	Marks	СО
Q 1	Explain the design standard procedure adopted to design the machine components with help of flow chart and suitable example.		CO1
Q 2	A bracket as shown in figure is made of the steel FeE 200 (σ_y = 200 MPa) and subjected to a force of 5 kN acting at an angle of 30° to the vertical. Consider a factor of safety 4, determine the cross section of the bracket. Dimensions are in mm.	10	CO2
Q 3	A welded connection of steel plate is shown in figure. It is subjected to an eccentric load of $50~\rm kN$. Determine the size of weld, if permissible shear stress in weld section is not to exceed $70~\rm N/mm^2$.		CO3

	50 kN 200 100 200 SECTION B (45)		
Atte	mpt all questions. There is internal choice in Q. No. 5 & 6.		
Q4	Design a longitudinal riveted joint for boiler shell the following data; Diameter of boiler shell = 1800 m Maximum internal pressure = 2.1 N/mm² Strength of plate in tension = 85 MPa Crushing strength of plate = 120 MPa Shearing strength of rivet = 60 MPa Assume the relevant data from DDHB. Select a suitable riveted joint to be designed. Suggest the diagram for designed joint.	15	CO3
Q 5	A protected type flanged coupling is required to transmit 60 kw power at 1440 rpm. Design the coupling with following materials, Material for shaft material for shaft as $40C8$ ($\sigma y=380$ MPa), material for bolts is $30C8$ (400 MPa) and flanges are made up of cast iron FG 150 ($\sigma ut=150$ MPa). Take factor of safety as 2.5 for all components	15	CO4
	The rotating shaft is simply supported by bearings at points B and C and is driven by a gear (not shown) which meshes with the spur gear at D, which has a 200 mm pitch diameter. Consider the mass of gear as 5 kg. The force F from the drive gear acts at a pressure angle of 20° . The shaft transmits a torque to point A of $T_A = 500$ Nm. Using a factor of safety of 4, determine diameter of the shaft. Consider appropriate material of the shaft.	15	

	10000 2000 1000 2000 1000 200 200	15	CO2/CO4
	SECTION-C (25)		
The	ere is internal choice in Q. No. 7		
Q7	In a reduction unit for a centrifugal pump, the pinion shaft is connected to a standard 25 KW of motor. The motor has no load speed of 1200 rpm. If the gear ratio is 2, design the pair of spur gear completely (static & Dynamic) by taking appropriate assumptions. Design can be done by assuming either pitch line velocity or fixing the center distance. OR In a reduction unit for a centrifugal pump, the pinion shaft is connected to a standard 25 KW of motor. The motor has no load speed of 1200 rpm. If the gear ratio is 3, design the pair of Helical gear completely (static & Dynamic) by taking appropriate assumptions. Assume the minimum no. of teeth on pinion as 30. Select the suitable material and helix angle as per requirement.	25	CO2/CO4