Name: Enrolment No:			
SECTION A			
S. No.		Marks	CO
Q 1	Mr. Vasudeva Ghosh has proposed to install "Roof-ponds" as a green building concept in many tall buildings in New Delhi. He claims that such Roof ponds will save energy and costs. However, Dr. Devakinandana Chattopadhyay, the chief engineer wantsMr. Vasudeva to present an analysis of the working and operation of such Roof-ponds over different weather and dirunal/nocturnal conditions. Prepare a small note for Mr. Vasudeva.	5	CO1
Q 2	Mr. Murari Dasgupta has claimed in a recent newspaper article that he has discovered a red-stone artifact which is a blackbody? Is the statement of Mr. Murari contradictory? Explain in detail.	5	$\mathrm{CO1}$
Q 3	Draw temperature profiles of liquid as well as tube surface in the fuly developed region of an a) Isothermal tube b) Isoflux tube Explain the trends and state your assumptions.	5	CO1
Q 4	Trombe walls are an interesting way of passive solar heating in many cold countries. Explain thoroughly what enables a trombe wall to cause heating inside a building.	5	CO1
SECTION B			
Q 5	In the final stages of production, a pharmaceutical is sterilized by heating it from 25 to $75^{\circ} \mathrm{C}$ as it moves at $0.2 \mathrm{~m} / \mathrm{s}$ through a straight thin-walled stainless steel tube of $12.7-\mathrm{mm}$ diameter. A uniform heat flux is maintained by an electric resistance heater wrapped around the outer surface of the tube. If the tube is 10 m long, what is the required heat flux? If fluid enters the tube with a fully developed velocity profile and a uniform temperature profile, what is the surface temperature at the tube exit and at a distance of 0.5 m from the entrance? Fluid properties may be approximated as $C_{\mathrm{p}}=$ $4000 \mathrm{~J} / \mathrm{kg} \mathrm{K}, \mu=2 \times 10^{3} \mathrm{~kg} / \mathrm{m}-\mathrm{s}, \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{k}=0.8 \mathrm{~W} / \mathrm{mK}$. OR	10	CO 2

| | Cooling water flows through the 25.4-mm-diameter thin-walled tubes of a steam
 condenser at $1 \mathrm{~m} / \mathrm{s}$, and a surface temperature of 350 K is maintained by the
 condensing steam. The water inlet temperature is 290 K , and the tubes are 5 m long.
 (a) What is the water outlet temperature? Evaluate water properties at an assumed
 average mean temperature. Was the assumed value reasonable? Comment.
 (b) A range of tube lengths from 4 to 7 m is available to the engineer designing this
 condenser. Generate a rough plot to show what coolant mean velocities are possible
 if the water outlet temperature is to remain at the value found for part (a). All other
 conditions remain the same. | |
| :--- | :--- | :--- | :--- |
| Two concentric spheres of diameters $D 1=0.5 \mathrm{~m}$ and $D 2=1 \mathrm{~m}$ are separated by an
 air space as shown in Figure below and have surface temperatures of 400 K and 300
 K respectively. | | |

Q 8	A grape of diameter \boldsymbol{d} is heated by a mild breeze of ambient air and by radiation from its near surroundings at the ambient temperature (assume that this is over the grape lower hemisphere and from that surface, the view factor is 1). The grape is cooled by radiation to a cloudless night sky (assume that this is over the grape upper hemisphere and from that surface, the view factor is 1). Assume: The grape temperature is uniform. Known about the grape are the values of k, ρ, c and α. Also known are the convective heat transfer coefficient, h , and the temperatures $\mathrm{T}_{\text {sky }}$, and $\mathrm{T}_{\text {ambient. }}$ Develop an equation that gives the grape steady state temperature T_{g}. Note that T_{g} should remain as the only undefined term, written in terms of the problem values given herein.	10	CO4

SECTION C

Q 9	Air is forced through a long tube of 0.1 m diameter at a bulk velocity of $6 \mathrm{~cm} / \mathrm{s}$. The inlet temperature is $30^{\circ} \mathrm{C}$ and the wall temperature is $150^{\circ} \mathrm{C}$. Begin by basing the fluid properties on $30^{\circ} \mathrm{C}$ temperature and 2.0 atmospheres pressure. a) After the flow has become fully-developed, hydrodynamically and thermally, and the bulk temperature has reached $100^{\circ} \mathrm{C}$, what is the value of $d T_{b} / d x$ at this point? Note, T_{b} is the bulk temperature and x is distance in the streamwise direction. Begin by establishing whether the flow is laminar or turbulent. Justify your answer. b) What length of tube from the entrance is needed to establish fully-developed conditions?	20	$\mathrm{CO3}$
Q 10	Suppose we have air at 1.0 atmosphere pressure on the shell side of a shell and tube heat exchanger (single pass for the fluid on this shell side). On the tube side, which has two passes, we have water entering at $50^{\circ} \mathrm{C}$. The overall heat transfer coefficient, U_{0}, is $100 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}\left(\mathrm{U}_{0}\right.$, based on the tube outside area). What is the total tube length? The air is flowing at $0.1 \mathrm{~kg} / \mathrm{sec}$ and is being heated from $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. The water flow rate is $0.1 \mathrm{~kg} / \mathrm{sec}$. What is the heat exchanger size, given as A_{0}, the tube total outside area? OR We know this about our heat exchanger: Fluid A: Air at 1.0 atmosphere $\begin{aligned} & \dot{m}=0.1 \mathrm{~kg} / \mathrm{sec} \\ & \mathrm{~T}_{\mathrm{A}, \mathrm{in}}=20^{\circ} \mathrm{C} \end{aligned}$ Fluid B: CO_{2} at 1.0 atmosphere pressure $\begin{aligned} & \dot{m}=0.1 \mathrm{~kg} / \mathrm{sec} \\ & \mathrm{~T}_{\mathrm{A}, \mathrm{in}}=100^{\circ} \mathrm{C} \end{aligned}$ The arrangement is cross-flow, both fluids are unmixed, $\mathrm{U}_{0} \mathrm{~A}_{0}$ for the exchanger is $400 \mathrm{~W} / \mathrm{K}$. What are the exit temperatures $\left[{ }^{\circ} \mathrm{C}\right]$? Assume constant properties taken at the respective inlet temperatures of each of the two fluids.	20	CO4

Appendix

Heat exchanger type	Effectiveness relation
1 Double pipe:	
Parallel flow	$\varepsilon=\frac{1-\exp [-\mathrm{NTU}(1+C)]}{1+C}$
Counterflow	$\varepsilon=\frac{1-\exp [-\mathrm{NTU}(1-C)]}{1-C \exp [-\mathrm{NTU}(1-C)]}$
2 Shell and tube: One-shall pass 2, 4, .. tube passes	$\varepsilon=2\left\{1+C+\sqrt{1+C^{2}} \frac{1+\exp \left[-\mathrm{NTU} \sqrt{1+C^{2}}\right]}{1-C \exp \left[-\mathrm{NTU} \sqrt{1+C^{2}}\right]}\right\}^{-1}$
3 Cross-flow: (single-pass)	
Both fluids unmixed	$\varepsilon=1-\exp \left\{\frac{N T U^{0.22}}{C}\left[\exp \left(-C \operatorname{NTU}^{0.78}\right)-1\right]\right\}$
$C_{\text {max }}$ mixed, $C_{\text {min }}$ unmixed	$\varepsilon=\frac{1}{C}(1-\exp \{1-C[1-\exp (-\mathrm{NTU})\})$
$C_{\text {min }}$ mixed, $C_{\text {max }}$ unmixed	$\varepsilon=1-\exp \left\{-\frac{1}{C}[1-\exp (-C \text { NTU })]\right\}$
4 All heat exchangers with $C=0$	$\varepsilon=1-\exp (-\mathrm{NTU})$

Heat exchanger type	NTU relation
1 Double pipe:	NTU $=-\frac{\ln [1-\varepsilon(1+C)]}{1+C}$
Parallel flow	$\mathrm{NTU}=\frac{1}{C-1} \ln \left(\frac{\varepsilon-1}{\varepsilon C-1}\right)$
Counterflow	$\mathrm{NTU}=-\frac{1}{\sqrt{1+C^{2}} \ln \left(\frac{2 / \varepsilon-1-C-\sqrt{1+C^{2}}}{2 / \varepsilon-1-C+\sqrt{1+C^{2}}}\right)}$
2 Shell and tube: One-shall pass 2, 4, ... tube passes	$\mathrm{NTU}=-\ln \left[1+\frac{\ln (1-\varepsilon C)}{C}\right]$
3 Cross-flow: (single-pass)	$\mathrm{NTU}=-\frac{\ln (C \ln (1-\varepsilon)+1)}{C}$
$C_{\text {max }}$ mixed, $C_{\text {min }}$ unmixed	$\mathrm{NTU}=-\ln (1-\varepsilon)$
4 All heat exchangers with $C=0$	

