Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2019

Semester **Programme Name: B. Tech. (Electrical)** : V

: Thermal & Hydraulic Equipment **Course Name** Time : 03 hrs Max. Marks: 100

Course Code : MECH 3011

Nos. of page(s) : 2

Instructions: All questions are compulsory

SECTION A

S. No.		Marks	CO
Q1	With the help of appropriate diagram, explain: 1) NDCT 2) Fin Fan Cooler	4	CO2
Q2	Enumerate at least 4 most important functions of 'Condensate Extraction Pump'.	4	CO1
Q3	State the reason behind having larger size Turbo-generator for a Hydro Electric Power Plant.	4	CO2
Q4	State the advantage and disadvantage of steam turbine used for power generation.	4	CO2
Q5	Explain the reason behind the selection of copper tubes or copper alloy tubes in 'Shell & Tube' type steam condenser.	4	соз
	SECTION B	ı	I
Q6	Explain the following condenser cooling system along with appropriate diagram: a) Open loop CW system b) Closed loop CW system	5+5	CO4
Q7	 a) In an IDCT the inlet & outlet CW temperatures are 32 Deg. C & 37 Deg. C with a total CW circulation of 1500 M3/ Hr. Percentage Drift loss is 0.09%, Evaporation loss is 0.84%. Due to certain relaxation in the state regulations on the total usage of CW, the COC was changed from 2 to 4. Calculate the change in 'Make-up water requirement/ day'. b) Comment on the implication the above changes would have on the 'Operation & Maintenance' of the CT. 	5+5	CO2
Q8	Calculate the Free Air Delivery (FAD) of a compressor with the following data: • Receiver Capacity = 5 m3 • Initial pressure in the Receiver = 1 Kg/cm2 (g) • Initial pressure in the Receiver = 7 Kg/cm2 (g) • Compressor pumping time = 5 min • Temperature of air in the Receiver = 36 Deg. Celsius • Ambient Air temperature = 30 Deg. Celsius	10	CO3

Explain HP-LP Bypass & PRDS system OR	n along wi	th appropriate diagram(s).	10	G 6 6
_ =	n along w	ith HP heaters along with	10	CO3
<u> </u>	CE CETO	A. C.		
	SECTIO	N-C		
with an available head of 250 m. Th 70% efficiency. Determine available		CO4		
b) Explain the function of the following in a Hydro-electric Plant:				
	oracion sys	tion, the generator & turbine		
below:				
1) Turbine Inlet Steam:	3	9.13 TPH at 756 Kcal/Kg		
2) Turbine Intermediate Steam Extraction: 31.9 TPH at 683 Kcal/Kg				
3) Turbine Exhaust Steam to conde	enser: 7	23 TPH at 608 Kcal/Kg		
Calculate the total Power generated by the cogeneration system.				
OR			20	CO3
Calculate the Indicated Power (IP), Brake Power (BP) & Mechanical Efficiency for a 4- Stroke Diesel Engine with the following data:				
a) Mean Effective Pressure (MEP)	=	6.0 Bar		
b) Cylinder Bore Diameter	=	200 mm		
c) Cylinder Stroke Length	=	300 mm		
d) Crank Speed	=	300 rpm		
e) Brake drum diameter	=	400 cm		
f) Brake Load	=	50 Kg		
	a) In a hydroelectric power plant, water with an available head of 250 m. The 70% efficiency. Determine available number of turbines required. Consider the following a) Dam b) Spillway c) Surger For a Turbo-generator used in a co-generation of the steam parameters at the turbine inherence are 92% & 82.6%. The steam parameters at the turbine inherence are 92% & 82.6%. The steam parameters at the turbine inherence are 92% & 82.6%. Turbine Inlet Steam: 2) Turbine Intermediate Steam Extra 3) Turbine Exhaust Steam to conderce at 4- Stroke Diesel Engine with the following at 4- Stroke Diesel Engine with the following and Mean Effective Pressure (MEP) b) Cylinder Bore Diameter c) Cylinder Stroke Length d) Crank Speed e) Brake drum diameter	OR Explain Feed Water recirculation system along with appropriate diagram. SECTION a) In a hydroelectric power plant, water is available with an available head of 250 m. The turbines 70% efficiency. Determine available power& number of turbines required. Consider a plant b) Explain the function of the following in a Hydrogan Dam b) Spillway c) Surge Tank didicincing are 92% & 82.6%. The steam parameters at the turbine inlet, process below: 1) Turbine Inlet Steam: 2) Turbine Intermediate Steam Extraction: 3: 3) Turbine Exhaust Steam to condenser: Calculate the total Power generated by the cogener of the following data a) Mean Effective Pressure (MEP) b) Cylinder Bore Diameter c) Cylinder Stroke Length d) Crank Speed e) Brake drum diameter	Explain Feed Water recirculation system along with HP heaters along with appropriate diagram. SECTION-C a) In a hydroelectric power plant, water is available at the rate of 1.864 m3/se with an available head of 250 m. The turbines run at a speed of 250 rpm wi 70% efficiency. Determine available power& suggest suitable turbine & number of turbines required. Consider a plant load factor of 0.5. b) Explain the function of the following in a Hydro-electric Plant:	Explain Feed Water recirculation system along with HP heaters along with appropriate diagram. SECTION-C a) In a hydroelectric power plant, water is available at the rate of 1.864 m3/sec with an available head of 250 m. The turbines run at a speed of 250 rpm with 70% efficiency. Determine available power& suggest suitable turbine & number of turbines required. Consider a plant load factor of 0.5. b) Explain the function of the following in a Hydro-electric Plant: