Name: Enrolment No:					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019 Course: Electronic Communication (ECEG3012) Semester: V Programme: B. Tech ELE Time: 03 hrs. Max. Marks: 100 Instructions: Attempt all questions. Diagrams must be neat and clean					
SECTION A					
S. No.		Marks	СО		
Q 1	Draw Manchester, AMI and both scrambling line coding for the bit sequence of 1000000110001.	5	CO4		
Q 2	Why Non Synchronous demodulation is used in Frequency shift keying technique, whereas Synchronous demodulation is used in Phase shift keying technique.	5	CO3		
Q 3	Comment on the statement that FM is superior to AM, though there are varity of AM techniques.	5	CO1		
Q 4	Why the video (picture) of the Television signals are transmitted using VSB technique and not by FM?	5	CO2		
SECTION B					
Q 5	Design a MODEM using binary frequency shift keying modulation technique . The carrier frequency of this MODEM is 500 MHz and the bit rate is 1000 kbps. Write the notation of frequency at each point.	10	CO4		
Q 6	Deduce the formula for finding the efficiency of a double side band amplitude modulated signal. Calculate efficiency and total transmitted power of broadcast AM transmitter, which is modulated to 60% of modulation index. The carrier power of the transmitter is 15 kW. How much the efficiency is improved if the modulation index has been increased to 80%	10	CO2		

Q 7	Define Nyquist criteria of sampling. Calculate the sampling frequency and quantization level of signal $m(t) = 5 \cos^2 3140t$. The step size is 2 volt.	10	СО3
Q 8	Draw the spectrum of DSB AM system and calculate the bandwidth. The carrier signal $c(t) =$ and the message signal $m(t) = 10 \text{ Sin } 2\pi \times 500t$	10	CO1
	SECTION-C		
Q 9	Code the following set of message by using both of Shannon-Fano Coding and ofHuffmann Coding $[M] = M_1 M_2 M_3 M_4 M_5 M_6 M_7 M_8 M_9$ $[P] = 0.20 0.15 0.15 0.10 0.10 0.09 0.09 0.10 0.02$	20	CO3
Q 10	An analog message signal is represented as: $\mathbf{m}(\mathbf{t}) = \mathbf{Cos} \ \mathbf{5000\pi t} + \mathbf{Cos} \ \mathbf{1500\pi t}$ is sampled using a suitable pulse train. What will be the pulse timing for ideal sampling? The signal is then quantized and converted into stream of 0 and 1. If the number of quantization level is decreased from to 256 to 64 in PCM, then by how much the rate of transmission and SQR will be changed? How the rate of transmission will alter if instead of PCM, we use DM technique.	20	CO4