Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Foundation Engineering Program: B Tech Civil Engineering Course Code: CIVL3005 Semester: V Time 03 hrs. Max. Marks: 100

Instructions: use of	S 6403, 2911	allowed
----------------------	--------------	---------

	SECTION A		
S. No.		Marks	СО
Q 1	Where are isolated footings generally used?	4	CO1
Q 2	Write a note on pile group spacing.	4	CO2
Q 3	Define cutting edge and specify its use.	4	CO2
Q 4	How consolidation test is used to understand expansive soils?	4	CO3
Q 5	How ground improvement used to solve foundation-engineering issues?	4	CO4
SECTION B			
Q 6	A continuous strip footing of width 0.75 mt is to be placed 3 m below the ground surface. The footing would be subjected to a load 15 kN/m ² . The subsoil is clayey, sandy silt with saturated unit weight of 1800kg/m^3 , and c' = 10kN/m^2 and $\varphi = 22^\circ$. compute the magnitude of load carrying capacity of the footing. Use IS: 6403-1981 recommendation.	10	C01
Q 7	Find the ultimate load capacity of piles in sandy soil of diameter 1.0 meter with a cross sectional area at tip of 10% of the area of the pile, $\gamma = 16 \text{ kN/m}^3$, $\varphi = 12^\circ$, $\delta 1 = 1.0^\circ$, K1 =1.1 are the properties of the soil.	10	CO2
Q 8	What are the design considerations for machine foundations? OR Explain the basement and foundation problems related to expansive soils.	10	CO3
Q 9	Describe the necessity of development of modern foundation engineering.	10	CO4
	SECTION-C		
Q 10	A 2.5m X 2.5 m square footing rests at a depth of 2.6 m below the ground surface. The soil properties are as follows: $\varphi=10^\circ$, $\gamma=17.7$ kN/m3, $\gamma'=7.8$ kN/m3, for $\varphi=20^\circ$, Nc=17.7; Nq=7.4; N $\gamma=5.0$. If there is a percentage variation of 10 % in bearing capacity if the water table falls from a depth of 3 m. to a depth of 6.0 m below the ground surface what is the value of cohesion. q=0.	20	CO1
Q 11	Explain the application of vertical drains in geotechnical engineering with neat sketches and specifications. OR Illustrate the modern construction techniques used in shallow foundations.	20	CO4