Name:	Name: UPES					
Enrolment No:						
	UNIVERSITY WITH A PURPOSE					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES						
~	End Semester Examination, December 2019					
Course: Design of Concrete Structure Semester: V						
Program:B.Tech. Civil EngineeringTime 03 hrs						
Course Code: CIVL 3002 Max. Marks:						
Instructions: Answer all questions of Section A, B & C						
	e all the necessary data if necessary) (Internal Choice is there in Q 3-SectionB and	Q 5-Sectio	on C)			
[×]		C C	,			
SECTION A						
S. No.		Marks	СО			
Q 1	Explain:	4				
	a) Characteristic Strength of concrete	4				
	b) Tensile strength of concrete	4	CO1			
	c) Modulus of elasticity of concrete	4	COI			
	d) Shrinkage of concrete	4				
	e) Creep of concrete					
	SECTION B					
Q 2	A three span continuous beam is to be designed to support an imposed dead load 15					
	kN/m and a service live load of 15 kN/m. The three spans are 8m each. Adopt	10	CO2			
	suitable load factors as specified in IS 456:2000 and design the beam, using M20	10	CO4			
	grade concrete and Fe 415 HYSD bars.					
Q 3	A rectangular slab of $8m \times 4m$ side length is simply supported along the edges. The					
	slab is required to support a uniformly distributed load of 3.5 kN/m ² . Using the yield line the relation the slab arrive $M25$ and h arrays of F_{2} 415					
	line theory, design the slab using M25 grade concrete and Fe 415.	10	CO2			
	\underline{Or} A square slab of 4m side length is simply supported along the edges. The slab is	10	CO4			
	required to support a uniformly distributed load of 4 kN/m^2 . Using the yield line					
	theory, design the slab using M20 grade concrete and Fe 415.					
	SECTION-C	1				
Q 4	Design a suitable reinforced concrete column of square section to support an axial					
	service load load of 1000kN. The size of the column is 400mm by 400mm. Design a	10	CO2			
	suitable footing for the column. The safe bearing capacity of the soil at site is 200	10	CO4			
	kN/m2. Adopt M20 grade concrete and Fe 415 HYSD bars. Sketch the details of					
	reinforced in the column and footing.					

Q 5	Design a reinforced concrete circular footing for a circular column of 300 mm diameter supporting a design ultimate load of 750 kN. The safe bearing capacity of soil at site is 200 kN/m ² . Adopt M20 grade concrete and Fe 415 HYSD bars. <u>Or</u> A staircase flight comprises of independent cantilevered slabs from a reinforced concrete wall. Assuming the risers of 150mm and treads of 300 mm, width of flight as 1.7m, design a typical tread slab. Assume the live loads specified in IS 875 code loading standards for an office building. Use M20 grade concrete and Fe 415 grade reinforcements.	10 10	CO3 CO4	
-----	---	----------	------------	--