Name:			
Course: Program Course Instructi Note: As	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019 Corrosion Engineering B. Tech (APE Gas) Semester: Code: MTEG365 Time $\mathbf{0 3} \mathbf{~ h r s}$ ons: *The question paper consists of three sections. Answer the questions section wise in the answer bo sume suitable data if necessary	100 oklet.	
SECTION A Answer all questions			
S. No.		Marks	CO
Q 1	Explain bimetallic corrosion and its prevention.	5	CO1
Q 2	Discuss about corrosion laws.	5	CO2
Q 3	Explain about polarization and passivity.	5	CO1
Q 4	Illustrate typical changes in the environment that can prevent corrosion.	5	CO3
SECTION B Answer all questions			
Q 5	Criticize corrosion in soil environment.	10	$\mathrm{CO3}$
Q 6	Summarize pourbaix diagram for iron in water system.	10	CO2
Q 7	Discuss metallurgical failure analysis.	10	CO4
Q 8	Predict whether zinc (Zn) is stable in aqueous solutions of HCl with pH between 0 and 5. The initial concentration of ZnCl_{2} is $10^{-6} \mathrm{M}$. The activity coefficients are assumed 1. The hydrogen pressure is 1 atm .	10	CO2
SECTION-C Answer all questions			
Q 9	Discuss the physical metallurgy of titanium alloys. Explain the mechanical properties and corrosion behavior of titanium in specific environment.	20	$\mathrm{CO5}$
Q 10	1. Derive corrosion potential and corrosion current. 2. Consider iron in a solution with a pH of 7 saturated with oxygen and a partial pressure of oxygen, $P_{O_{2}}=1 \mathrm{~atm}$. Calculate the corrosion current and the corrosion potential. Additional information: $\begin{aligned} & {\left[\mathrm{Fe}^{2+}\right]=0.7 \mathrm{M}, P_{O_{2}}=1 \mathrm{~atm}} \\ & \mathrm{~B}_{\mathrm{a}}=0.08 \mathrm{~V} / \mathrm{decade}, \beta_{\mathrm{c}}=-0.11 \mathrm{~V} / \text { decade } \\ & i_{F e}^{o}=10^{-5} \mathrm{~A} / \mathrm{cm}^{2}, i_{O H-}^{o}=10^{-6} \mathrm{~A} / \mathrm{cm}^{2} \end{aligned}$	$(10+10)$	$\mathrm{CO3}$

Table: Standard Electrode Potentials at $25^{\circ} \mathrm{C}$ and Their Isothermal Temperature Coefficients
Electrode Reaction

$$
e^{o}(V v s S H E) \quad\left(\frac{d E^{o}}{d T}\right) \times 10^{3}\left(\frac{V}{o_{C}}\right)
$$

$\mathrm{Li}^{+} \mid \mathrm{Li}$	$\mathrm{Li}^{+}+\mathrm{e}^{-}=\mathrm{Li}$	-3.045	-0.534
$\mathrm{Rb}^{+} \mid \mathrm{Rb}$	$\mathrm{Rb}^{+}+\mathrm{e}^{-}=\mathrm{Rb}$	-2.925	-1.245
$\mathrm{Cs}^{+} \mid \mathrm{Cs}$	$\mathrm{Cs}^{+}+\mathrm{e}^{-}=\mathrm{Cs}$	-2.923	-1.197
$\mathrm{K}^{+} \mid \mathrm{K}$	$\mathrm{K}^{+}+\mathrm{e}^{-}=\mathrm{K}$	-2.925	-1.080
$\mathrm{Ra}^{2+} \mid \mathrm{Ra}$	$\mathrm{Ra}^{2+}+2 \mathrm{e}^{-}=\mathrm{Ra}$	-2.916	-0.59
$\mathrm{Ba}^{2+} \mid \mathrm{Ba}$	$\mathrm{Ba}^{2+}+2 \mathrm{e}^{-}=\mathrm{Ba}$	-2.906	-0.395
$\mathrm{Ca}^{2+} \mid \mathrm{Ca}$	$\mathrm{Ca}^{2+}+2 \mathrm{e}^{-}=\mathrm{Ca}$	-2.866	-0.175
$\mathrm{Na}^{+}{ }^{+} \mathrm{Na}$	$\mathrm{Na}^{+}+\mathrm{e}^{-}=\mathrm{Na}$	-2.714	-0.772
$\mathrm{La}^{3+} \mid \mathrm{La}$	$\mathrm{La}^{3+}+3 \mathrm{e}^{-}=\mathrm{La}$	-2.522	+0.085
$\mathrm{Mg}^{2+} \mid \mathrm{Mg}$	$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-}=\mathrm{Mg}$	-2.363	+0.103
$\mathrm{Be}^{2+} \mid \mathrm{Be}$	$\mathrm{Be}^{2+}+2 \mathrm{e}^{-}=\mathrm{Be}$	-1.847	+0.565
$\mathrm{Al}^{3+} \mid \mathrm{Al}$	$\mathrm{Al}^{3+}+3 \mathrm{e}^{-}=\mathrm{Al}$	-1.662	+0.504
$\mathrm{Ti}^{2+} \mid \mathrm{Ti}$	$\mathrm{Ti}^{2+}+2 \mathrm{e}^{-}=\mathrm{Ti}$	-1.628	-
$\mathrm{Zr}^{4+} \mid \mathrm{Zr}$	$\mathrm{Zr}^{4+}+4 \mathrm{e}^{-}=\mathrm{Zr}$	-1.529	-
$\mathrm{V}^{2+} \mid \mathrm{V}$	$\mathrm{V}^{2+}+2 \mathrm{e}^{-}=\mathrm{V}$	-1.186	-
$\mathrm{Mn}^{2+} \mid \mathrm{Mn}$	$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-}=\mathrm{Mn}$	-1.180	-0.08
$\mathrm{Zn}^{2+} \mid \mathrm{Zn}$	$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-}=\mathrm{Zn}$	-0.762	+0.09
$\mathrm{Cr}^{3+} \mid \mathrm{Cr}$	$\mathrm{Cr}^{3+}+3 \mathrm{e}^{-}=\mathrm{Cr}$	-0.744	+0.468
$\mathrm{SbO}_{2}^{-} \mid \mathrm{Sb}$	$\mathrm{SbO}_{2}^{-}+2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{e}^{-}=\mathrm{Sb}+4 \mathrm{OH}^{-}$	-0.670	-
$\mathrm{Ga}^{3+} \mid \mathrm{Ga}$	$\mathrm{Ga}^{3+}+3 \mathrm{e}^{-}=\mathrm{Ga}$	-0.529	+0.67
$\mathrm{S}^{2-\mid S}$	$\mathrm{S}+2 \mathrm{e}^{-}=\mathrm{S}^{2-}$	-0.510	-
$\mathrm{Fe}^{2+} \mid \mathrm{Fe}$	$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}=\mathrm{Fe}$	-0.440	+0.052
$\mathrm{Cr}^{3+}, \mathrm{Cr}^{2+} \mid \mathrm{Pt}$	$\mathrm{Cr}^{3+}+\mathrm{e}^{-}=\mathrm{Cr}^{2+}$	-0.408	-
$\mathrm{Cd}^{2+} \mid \mathrm{Cd}$	$\mathrm{Cd}^{2+}+2 \mathrm{e}^{-}=\mathrm{Cd}$	-0.402	-0.093
$\mathrm{Ti}^{3+}, \mathrm{Ti}^{2+} \mid \mathrm{Pt}$	$\mathrm{Ti}^{3+}+\mathrm{e}^{-}=\mathrm{Ti}^{2+}$	-0.369	-
$\mathrm{Tl}^{+} \mid \mathrm{Tl}$	$\mathrm{Tl}^{+}+\mathrm{e}^{-}=\mathrm{Tl}$	-0.336	-1.327
$\mathrm{Co}^{2+} \mid \mathrm{Co}$	$\mathrm{Co}^{2+}+2 \mathrm{e}^{-}=\mathrm{Co}$	-0.277	+0.06
$\mathrm{Ni}^{2+} \mid \mathrm{Ni}$	$\mathrm{Ni}^{2+}+2 \mathrm{e}^{-}=\mathrm{Ni}$	-0.250	+0.06
$\mathrm{Mo}^{3+} \mid \mathrm{Mo}$	$\mathrm{Mo}^{3+}+3 \mathrm{e}^{-}=\mathrm{Mo}$	-0.20	.
$\mathrm{Sn}^{2+} \mid \mathrm{Sn}$	$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-}=\mathrm{Sn}$	-0.138	-0.282
$\mathrm{Pb}^{2+} \mid \mathrm{Pb}$	$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-}=\mathrm{Pb}$	-0.126	-0.451
$\mathrm{Ti}^{4+}, \mathrm{Ti}^{3+} \mid \mathrm{Pt}$	$\mathrm{Ti}^{4+}+\mathrm{e}^{-}=\mathrm{Ti}^{3+}$	-0.040	-
$\mathrm{H}^{+}, \mathrm{H}_{2} \mid \mathrm{Pt}$	$\mathrm{H}^{+}+\mathrm{e}^{-}=1 / 2 \mathrm{H}_{2}$	T0.000	$\begin{aligned} & \mathrm{T} 0.000 \\ & (+0.871)^{\mathrm{m}} \end{aligned}$
$\mathrm{Sn}^{4+}, \mathrm{Sn}^{2+}{ }^{\text {Pt }}$	$\mathrm{Sn}^{4+}+2 \mathrm{e}^{-}=\mathrm{Sn}^{2+}$	+ 0.015	(+0.871)
$\mathrm{Cu}^{2+}, \mathrm{Cu}^{+} \mid \mathrm{Pt}$	$\mathrm{Cu}^{2+}+\mathrm{e}^{-}=\mathrm{Cu}^{+}$	+ 0.153	+0.073
$\mathrm{Cu}^{2+} \mid \mathrm{Cu}$	$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-}=\mathrm{Cu}$	+0.337	+0.008
$\underset{(\mathrm{CN})_{6}^{\frac{a}{4}}}{\mathrm{Fe}} \underset{(\mathrm{CN})^{\frac{2}{2}}}{ }, \mathrm{Fe}$	$\mathrm{Fe}(\mathrm{CN})_{6}^{3-}+\mathrm{e}^{-}=\mathrm{Fe}(\mathrm{CN})_{6}^{4}$	+0.360	-008
$\mathrm{OH}^{-}, \mathrm{O}_{2} \mid \mathrm{Pt}$	$1 / 2 \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}=2 \mathrm{OH}^{-}$	+0.401	-0.440
$\mathrm{Cu}^{+} \mid \mathrm{Cu}$	$\mathrm{Cu}^{+}+\mathrm{e}^{-}=\mathrm{Cu}$	+0.521	-0.058
$\mathrm{I}^{-} \mid \mathrm{I}_{2}, \mathrm{Pt}$	$\mathrm{I}_{2}+2 \mathrm{e}^{-}=2 \mathrm{I}^{-}$	+0.535	-0.148
$\underset{\mathrm{MnO}_{4}^{2-} \mid \mathrm{Pt}}{\mathrm{MnO}_{\overline{4}}}$	$\mathrm{MnO}_{4}^{-}+\mathrm{e}^{-}=\mathrm{MnO}^{2-}$	+0.564	-

