Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Fuels and Combustion (MEAD 3007)

Programme: B.Tech._ADE

Semester: V

Time: 03 hrs.

Max. Marks: 100

Instructions: Answer all the questions in Section A. Section B and C have internal choice. Answer strictly to the point with reference to the marks allotted to the question.

SECTION A

S. No.		Marks	CO		
Q 1	Classify the fuels based on the availability and applications.	4	CO1		
Q 2	Explain the advantages and disadvantages of the use of solid fuels in heating applications.	of the use of solid fuels in heating 4			
Q 3	Discuss proximate and ultimate analysis of liquid fuels briefly.	of liquid fuels briefly. 4 CO			
Q 4	Explain adiabatic flame temperature with equations.	4 CO4			
Q 5	Illustrate the four physiochemical properties of lubricants.	4	CO5		
	SECTION B				
Q 6	Analyze the volatility of liquid fuels and its effect on performance of IC engines.	10	CO2		
Q 7	Derive the equation for flame quenching and analyze the conditions leads to flame quenching in IC engines.	10	CO3		
Q 8	A carbohydrate is a compound composed solely of carbon, hydrogen and oxygen. When 10.7695 g of an unknown carbohydrate (MW = 128.2080 g/mol) was subjected to combustion analysis with excess oxygen, it produced 29.5747 g CO ₂ and 12.1068 g H ₂ O. What is its molecular formula?		CO4		
Q 9	 Interpret the different kinds of lubrication system with neat diagrams. (OR) (i) Explain combustion efficiency of IC engines with formulas. (ii) Classify the lubricants and additives used for IC engine applications. 		CO5		
	SECTION-C				

Q 10	(a) Explain any five combustion characteristics of SI and CI engines.(b) Interpret the effect of flame quenching on emissions of IC engines.			20	CO2, CO3
Q 11	Determine the constant pressure adiabatic flame temperature for the combustion of Methane with a stoichiometric air at 1 atmospheric pressure. The reactant temperature at initial condition, Ti=298 K. The reaction is $CH_4 + 2O_2 + 7.52 N_2 = CO_2 + 2H_2O +$ 7.524 N ₂ .Also, determine the constant volume adiabatic flame temperature using the following Table. The specific heats of reactants are taken at an average temperature between initial and final temperature, which is $(298+1850)/2 = 1074 \text{ K} \approx 1100 \text{ K}.$				
	Species CH4	Standard Enthalpy of Formation at 298 K (kJ/kmol) -72.1	Average specific heat at 1100 K (kJ/kmol-K) -75.328	20	CO4, CO5
	CO2		55.396		
	H ₂ O	244.5	-42.44		
	N2	0			
	O2	0			
	(OR) A fuel has the following gravimetric composition; hexane (C_6H_{14}) : 40 per cent octane (C_8H_{18}) : 30 per cent cyclohexane (C_6H_{12}) : 25 per cent benzene (C_6H_6) : 5 per cent If the gravimetric air/fuel ratio is 17:1, determine the equivalence ratio.				