Name: Enrolment No:			
End Semester Examination, Dec 2019 Programme Name: B.TECH OPEN ELECTIVE Semester: V Course Name: Matlab for engineering. Time: Course Code: ECEG 3203 Max. Mark Nos. of page(s): 2			
SET A			
S. No.	SECTION A : Attempt all the questions	Marks	CO
Q 1	Consider the function $\mathrm{F}=5 \sin 2 \pi x y+5 \mathrm{x}^{2}+3 \mathrm{xy}+5 \mathrm{z}$. Create the column vector A such that Aij belongs to the $F(x, y, z)$ for $x=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]$ 5], $y=\left[\begin{array}{lllll}9 & 0 & 7 & 8 & 4\end{array}\right], z=\left[\begin{array}{llll}1 & 0 & 5 & 3\end{array} 2\right]$. Write a matlab program for the above statements.	7	CO1
Q 2	Find the errors in the following instructions: (a) $\begin{aligned} & \mathrm{x}=\left[\begin{array}{lllll} 1 & 2 & 0 & 7 & 9 \end{array}\right] \\ & \mathrm{y}=5 * \mathrm{x}^{2}+9 * \mathrm{x}+10 \end{aligned}$ (b) $\begin{aligned} & \mathrm{y}=\left[\begin{array}{lllll} 0 & 1 & 7 & 9 & 2 \end{array}\right] \\ & \mathrm{F}=\text { inline }\left(9 . * \mathrm{x}^{2}+5 . * \mathrm{x}+100\right) \end{aligned}$	8	$\begin{gathered} \mathrm{CO1,C} \\ \mathrm{O} 2 \end{gathered}$
Q 3	Write the Matlab instructions to evaluate the integral of the given function	7	$\begin{aligned} & \text { CO2, } \\ & \text { CO1 } \end{aligned}$
Q4	Consider the discrete function $\mathrm{Y}=\left[\begin{array}{lllllll}-2 & -1 & -2 & 2 & 4 & 11 & 16\end{array}\right]$, Write the Matlab code to evaluate the odd even part of Y and plot the subplots in a single plot.	8	$\begin{aligned} & \mathrm{CO2}, \\ & \mathrm{CO} 3 \\ & \hline \end{aligned}$
SECTION B : Attempt all the questions			
Q 5	Create a 10x10 matrix random matrix and do the following operations: (a). Multiply all the elements by 100 and round off the each element. (b). Replace all the element of 10x10 matrix with zeros (c). Replace all the element of 10×10 matrix with infinity (d). Extract all $30<=\mathrm{aij}<=50$ in a vector B.	15	$\begin{aligned} & \mathrm{CO1}, \\ & \mathrm{CO} 2 \end{aligned}$
Q6	Write a MATLAB instructions for the following (a). Consider the complex matrix A such that $\mathrm{Aij}=\mathrm{a}+\mathrm{bj}$, Evaluate the real magnitude of each element and the phase angle of each element. (b). Plot Phase Vs Amplitude using matlab instructions (Attributes y axix: phase angle , Attribute x axis, Amplitude)	15	$\begin{gathered} \text { C03,C } \\ \text { O4 } \end{gathered}$

Q7	Solve the second order non linear ODE using matlab instructions and plot the output $\ddot{\theta}+\omega^{2} \sin \theta=0 \quad \Rightarrow \quad \ddot{\theta}=-\omega^{2} \sin \theta$ with the initial conditions $\theta(0)=1, \quad \dot{\theta}(0)=0 .$	15	$\begin{gathered} \mathrm{CO} 2, \\ \mathrm{CO} 4 \end{gathered}$
Attempt all the questions			
Q8	(a)Write the matlab instruction code for matrix $\mathrm{A}=\left[\begin{array}{lll}12 & 3 & 4 ; 49361 ; 1+1 \mathrm{j} 3+4 \mathrm{j} 6+0 \mathrm{j}]\end{array}\right.$ such the new matrix results into $B=\left[\begin{array}{ll}14916 ; 2361 ; 1.41456\end{array}\right]$. Add the diagonal elements of A and B'. (b). wrtie the application of Matlab in your engineering branch with some real time examples. (c). $\mathrm{A}=[2340 ; 1961 ; 0016] ; \mathrm{B}=[1058 ; 1101 ; 9765$] find the $\mathrm{M}=(\mathrm{A}>\mathrm{Y}) \&(\mathrm{X}>6)$ and $\mathrm{Z}=\sim(\mathrm{A} \mid \mathrm{B})$	25	$\begin{gathered} \text { CO4,C } \\ 03 \end{gathered}$

