Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019			
Course: Robotics and Control Semester: V Program: B.Tech. Mechatronics Time $\mathbf{0 3}$ hrs. Course Code: ECEG 3001 Max. Marks: 100 Pages: 02 Instructions: Assume any missing data.			
SECTION A			
S. No.		Marks	CO
Q 1	Describe the necessity of position control and force control in a robotic application.	5	CO1
Q 2	Draw the workspace of a SCARA robot. Describe its features.	5	CO1
Q 3	Define path and trajectory. Differentiate between joint-space and Cartesian space trajectories.	5	CO1
Q 4	Differentiate between forward and inverse kinematics.	5	CO2
SECTION B			
Q 5	Derive the equations of motion for a one-link arm with payload at its free-end using the approach of Lagrangian dynamics. Take acceleration due to gravity as g. Develop a linear second-order SISO model of the joint of the one-link arm. Draw block diagram and determine the transfer function.	10	CO2
Q 6	Analyze the force-control tasks for the task of driving a screw of pitch p at a desired angular velocity ω_{d} using a screwdriver.	10	CO4
Q 7	Describe the architecture of the hybrid position/force control and compare it with impedance control. OR For a robot controller it is proposed to implement partitioned proportional integral (PPI) control strategy. Develop the block diagram and mathematical model for PPI Controller.	10	CO4
Q 8	The transfer function of a system is $G(s)=\frac{0.2}{0.1 s^{2}+0.6 s+1}$ Determine the natural frequency, damping ratio and the time response of the system for a unit step input.	10	CO4
SECTION-C			
Q 9	The second joint of a 6-axis robot is to go from an initial angle of 20° to an intermediate angle of 80° in 5 seconds and continue to its destination of 25° in another 5 seconds.	20	$\begin{gathered} \mathrm{CO} 3 / \\ \mathrm{CO} 2 \\ \hline \end{gathered}$

	Calculate the coefficients for third-order polynomial in joint-space. Plot the joint angles, velocities and accelerations. Assume the joint stops at intermediate points. OR Describe the method for deriving the dynamic equations of motion for multiple-DoF robots.		
Q 10	Consider a two-link rigid planar robot having two revolute joints. The end-effector of the robot moves in X-Y plane from initial position A $\left(\frac{\sqrt{3}+1}{2}, \frac{\sqrt{3}+1}{2}\right)$ to final position B $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}+1\right)$ in 10 seconds. Compute the following. a) The joint angles corresponding to positions- A and B of the end-effector. b) The differential joint velocities. c) If the joints follow the third-order polynomial trajectories, determine the principal inertia torque required at Joint-2 in moving from position A to position B using the following expression. $\text { Inertia torque }=\sum_{j=1}^{n} D_{i j} \ddot{q}_{j}$ where: $D_{i j}=\sum_{p=\max (i, j)}^{n} \operatorname{Trace}\left(U_{p j} J_{p} U_{p i}^{T}\right)$ (Note: The symbols used in above expressions have been discussed in the class.) Physical parameters for the two-link rigid planar robot are as follows: Length of each link $=1 \mathrm{~m}$ Mass of each link $=1 \mathrm{~kg}$	20	CO2

