Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Fluid Mechanics and Machinery Program: B. Tech (Mechatronics) Course Code: MECH 3004 Semester: V Time 03 hrs. Max. Marks: 100

Instructions: Note: Attempt all questions, internal choices are given. Section B and Section C, both having ONE INTERNAL choice. SECTION A

	SECTION A		
S. No.		Marks	CO
Q 1	Explain with the help of sketch working of Bourdon tube pressure gauge.	05	CO1
Q2	Discuss Geometric, Kinematic and Dynamic similarity. Illustrate with suitable examples where these fundamentals have been useful to reduce time and efforts for the design and development.	05	CO2
Q3	Define various efficiencies of centrifugal pump.	05	CO1
Q4	Derive an expression to determine length of equivalent pipe, in case of pipes are connected in parallel to each other.	05	CO2
	SECTION B		
Q5	Show that the streamlines and equipotential lines form a net of mutually perpendicular lines.	10	CO2
Q6	Derive the expression for minor losses in pipe due to sudden enlargement and sudden contraction.	10	CO2
Q7	The velocity along the centerline of the Hagen-poiseuille flow in a 0.1 m diameter pipe is 2 m/s. If the viscosity of the fluid is 0.07 kg/ms and its specific gravity is 0.92, calculate (a) volumetric flow rate (b) shear stress of the fluid at the pipe wall (c) Darcy friction coefficient.	10	CO3
Q8	A jet of water of diameter 40 mm moving with a velocity of 30 m/s, strikes a curved fixed symmetrical plate at the centre. Find the force exerted by the water jet in the	10	CO3

	(B) Derive an expression for the work done by the runner of hydraulic turbine.	10	CO2
	 (A) In an inward flow reaction turbine the head on the turbine is 32 m. The external and internal diameter are 1.44 m and 0.72 m respectively. The velocity of flow through the runner is constant and equal to 3 m/s. The guide blade angle is 10° and the runner vanes are rigid at inlet. If the discharge at outlet is radial, determine : (a) The speed of the turbine (b) The vane angle at outlet of the runner, and (c) Hydraulic efficiency. 	10	CO5
	OR		
	(B) Explain different types of energy losses encountered in centrifugal pumps.	10	CO2
	inlet diameter is 25 cm, calculate the inlet-blade angle.		
	88%. (a) Calculate the brake power and torque applied to the pump shaft. (b) If the		
	and the outlet blade is curved backwards at an angle of 35°. The overall efficiencies	10	CO5
	density 0.85 at a tip speed of 25.1 m/s. The flow velocity is constant that to 2.0 m/s		
Q10	(A) A centrifugal pump with 40 cm impeller diameter delivers 75 L/s of oil of relative		
	Contractions and expansion are sudden. (Assume k for contraction = 0.30)		
	difference in elevation of 15 m between the two reservoirs. Account for all losses.	20	CO4
	pipes are: 0.018, 0.02 and 0.019 respectively. Determine the rate of flow for a		
	between a high level reservoir and low level reservoir. The friction factor f for the		
	long of 25 cm diameter – are connected in series in the same order as indicated above		
Q9	Three pipes -300 m long of 30 cm diameter, 150 m long of 20 cm diameter and 200 m		
	SECTION-C		
	vane. Presuming vane to be smooth determine force exerted by jet on the vane.	_•	
	fixed symmetrical vane. After impingement, the jet gets deflected through 160° by the	10	CO3
	A jet of water of 20 mm diameter and moving at 15 m/s, strikes upon the centre of a		
	OR		
	curved plate.		