Name: Enrolment No:			
Course: Fluid Mechanics and Machinery Semester: V Program: B. Tech (Mechatronics) Time 03 hrs. Course Code: MECH 3004 Max. Marks: $\mathbf{1 0 0}$ Instructions: Note: Attempt all questions, internal choices are given. Section B and Section C, both having ONE INTERNAL choice.			
SECTION A			
S. No.		Marks	CO
Q 1	Explain with the help of sketch working of Bourdon tube pressure gauge.	05	CO1
Q2	Discuss Geometric, Kinematic and Dynamic similarity. Illustrate with suitable examples where these fundamentals have been useful to reduce time and efforts for the design and development.	05	CO2
Q3	Define various efficiencies of centrifugal pump.	05	CO1
Q4	Derive an expression to determine length of equivalent pipe, in case of pipes are connected in parallel to each other.	05	CO2
SECTION B			
Q5	Show that the streamlines and equipotential lines form a net of mutually perpendicular lines.	10	CO2
Q6	Derive the expression for minor losses in pipe due to sudden enlargement and sudden contraction.	10	CO2
Q7	The velocity along the centerline of the Hagen-poiseuille flow in a 0.1 m diameter pipe is $2 \mathrm{~m} / \mathrm{s}$. If the viscosity of the fluid is $0.07 \mathrm{~kg} / \mathrm{ms}$ and its specific gravity is 0.92 , calculate (a) volumetric flow rate (b) shear stress of the fluid at the pipe wall (c) Darcy friction coefficient.	10	CO 3
Q8	A jet of water of diameter 40 mm moving with a velocity of $30 \mathrm{~m} / \mathrm{s}$, strikes a curved fixed symmetrical plate at the centre. Find the force exerted by the water jet in the	10	CO 3

	direction of the jet, if the jet is deflected through an angle of 120° at the outlet of the curved plate.		
	OR		
	A jet of water of 20 mm diameter and moving at $15 \mathrm{~m} / \mathrm{s}$, strikes upon the centre of a fixed symmetrical vane. After impingement, the jet gets deflected through 160° by the vane. Presuming vane to be smooth determine force exerted by jet on the vane.	10	CO
SECTION-C			
Q9	Three pipes -300 m long of 30 cm diameter, 150 m long of 20 cm diameter and 200 m long of 25 cm diameter - are connected in series in the same order as indicated above between a high level reservoir and low level reservoir. The friction factor f for the pipes are: $0.018,0.02$ and 0.019 respectively. Determine the rate of flow for a difference in elevation of 15 m between the two reservoirs. Account for all losses. Contractions and expansion are sudden. (Assume k for contraction $=0.30$)	20	$\mathrm{CO4}$
Q10	(A) A centrifugal pump with 40 cm impeller diameter delivers $75 \mathrm{~L} / \mathrm{s}$ of oil of relative density 0.85 at a tip speed of $25.1 \mathrm{~m} / \mathrm{s}$. The flow velocity is constant that to $2.0 \mathrm{~m} / \mathrm{s}$ and the outlet blade is curved backwards at an angle of 35°. The overall efficiencies 88%. (a) Calculate the brake power and torque applied to the pump shaft. (b) If the inlet diameter is 25 cm , calculate the inlet-blade angle.	10	CO5
	(B) Explain different types of energy losses encountered in centrifugal pumps.	10	CO 2
	OR		
	(A)In an inward flow reaction turbine the head on the turbine is 32 m . The external and internal diameter are 1.44 m and 0.72 m respectively. The velocity of flow through the runner is constant and equal to $3 \mathrm{~m} / \mathrm{s}$. The guide blade angle is 10° and the runner vanes are rigid at inlet. If the discharge at outlet is radial, determine : (a) The speed of the turbine (b) The vane angle at outlet of the runner, and (c) Hydraulic efficiency.	10	CO5
	(B) Derive an expression for the work done by the runner of hydraulic turbine.	10	CO2

