Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

SECTION A

Course: Design & Analysis of Algorithm Semester: 5th Program: BT-Mechatronics Course Code: MECH 3014

Time 03 hrs. Max. Marks: 100

Instructions: Attempt all questions

SECTION A					
C N	NOTE: Attempt all Questions.				
S. No.		Marks	CO		
Q 1	Describe Algorithm and write all the fundamental steps required to design and analyze an algorithm.	4	CO1		
Q2	Give brief concept of Divide & Conquer.	4	CO2		
Q3	Describe minimum cost spanning tree algorithm?	4	CO3		
Q4	Define dynamic programming? Explain with the help of suitable examples.	4	CO4		
Q5	Explain how the Knapsack problem can be solved using branch and bound algorithms.	4	CO5		
	SECTION B				
	NOTE: Question no. 6, 7, 8 are compulsory.				
	Anyone can be solved in question 9.				
Q 6	Explain travelling salesman problem? Find the solution of following travelling salesman problem using branch and bound method. Cost matrix= $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	CO5		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Q7	Discuss Strassen's matrix multiplication with example.	10	CO2		
Q8	Elaborate Backtracking? Explain the technique by solving 8-Queen problem and explain the process in detail.	10	CO5		
Q9	Describe binary search tree with three traversal patterns. Give suitable example with neat diagram for all three traversal of binary search trees OR	10	CO4		
	Sort the list 415, 213, 700, 515, 712, 715 using Merge sort algorithm. Also explain the time complexity of merge sort algorithm.		CO2		

Γ	The maximum weight of 12 is allowed in the Knapsack.	
	Find the value of maximum profit with the optimal solution of the fractional Knapsack	
	problem.	