| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
| UNIVERSITY OF PETROLEUM AND ENERGY STUDIES |  |  |  |
| End Semester Examination, December 2019 |  |  |  |
| Programme Name: B.Tech Mechanical Engineering Semester |  |  |  |
| Course Name : Manufacturing Technology II Tim |  |  |  |
| Course Code : MEPD 3003 Max. Marks : 100 |  |  |  |
| Nos. of page(s) : 3 |  |  |  |
| Instructions: |  |  |  |
| SECTION A |  |  |  |
| S. No. |  | Marks | CO |
| Q 1 | Discuss various types of chips formed in metal cutting operation. | 4 | CO-1 |
| Q 2 | Differentiate between crater wear and flank wear | 4 | CO-2 |
| Q 3 | Define BLU in CNC machine. A stepper motor has 150 steps. The output shaft of the motor is directly coupled to a double start screw of pitch 4 mm , which drives a table. If the frequency of the pulse supplied to the motor is 200 Hz . Find the speed of the table. | 4 | CO-4 |
| Q 4 | A 31.8 mm HSS drill is used to drill a hole in cast iron block 120 mm thick at a cutting speed of $20 \mathrm{~m} / \mathrm{min}$ and feed of $0.3 \mathrm{~mm} / \mathrm{rev}$. If the over travel of drill is 4 mm and approach 9 mm . determine the time required to drill a hole. | 4 | CO-3 |
| Q-5 | Give the function of below mentioned codes G90, M08, G82, M05 | 4 | CO-5 |
| SECTION B |  |  |  |
| Q 6 | Give method of producing gear of 69 teeth by using <br> a) Simple indexing <br> b) differential indexing, if the nearest available number of holes in the plate is 68 <br> c) compound indexing with brown and shaper dividing head <br> Plate No.1: 15, 16, 17, 18, 19, 20 holes <br> Plate No. 2: 21, 23, 27, 29, 31, 33, holes <br> Plate No. 3: 37, 39, 41, 43, 47, 49 holes | 10 | CO 3 |
| Q 7 | Explain the working principle of electrochemical machining. Calculate the material removal rate and the electrode feed rate in the electrochemical machining of an Iron surface that is $25 \mathrm{~mm} \times 25 \mathrm{~mm}$ in cross section using NaCl in waster as electrolyte. The gap between the electrode and the work piece is 0.25 mm . The supply voltage is 12 volt DC. The specific resistance of the electrolyte is $3 \mathrm{ohms}-\mathrm{cm}$ for iron. Valence $\mathrm{Z}=2$, atomic weight is 55.85 amu , density $=7860 \mathrm{~kg} / \mathrm{m}^{3}$. | 10 | CO 3 |
| Q 8 | a) Discuss DDA algorithm for linear interpolation <br> b) Differentiate between open and close loop control in CNC machine. | 10 | CO4 |


| Q-9 | Discuss the working principle of electro discharge machining. Deduce the expression for charging and discharging time in RC type generator in EDM <br> OR <br> Enlist the role of dielectric in electro discharge machining. In an EDM operation with RC circuit, following data is available <br> Supply voltage $=100 \mathrm{~V}$ <br> Breakdown voltage $=60 \mathrm{~V}$ <br> Resistance $=10$ ohms <br> Percentage of discharge energy available for material removal $=40 \%$ <br> Calculate the time required to drill a square hole of sides 15 mm in steel work piece having thickness of 20 mm . also calculate the MRR. Specific energy for melting steel is $2.5 \mathrm{~J} / \mathrm{mm}^{3}$ | 10 | CO-3 |
| :---: | :---: | :---: | :---: |
|  | SECTION-C |  |  |
| Q 10 | a) Derive the expression for optimum cutting speed using minimum cost criterion. <br> b) Turning operation is performed on cylinder of 50 mm diameter and 200 mm length. Value of the feed is $0.3 \mathrm{~mm} / \mathrm{rev}$. Taylor's tool life equation for cutting is given by $\mathbf{V T}^{\mathbf{0 . 2}} \mathbf{= 3 0 0}$. Job loading and unloading time is 2 min . tool change time is 2 min . labor cost is 15 Rs ./hour and original tool cost $5 \mathrm{Rs} / t \mathrm{tool}$. Find <br> i. Optimum cutting speed, tool life, time/piece and cost/piece using minimum cost criteria <br> ii. Optimum cutting speed, tool life, time/piece and cost/piece using maximum production rate criteria | 20 | $\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO} 2 \end{aligned}$ |
| Q-10 | a) Write down the CNC turning program for CNC lathe machine. (15) <br> b) Differentiate between PTP and contour movement is CNC machine <br> OR <br> a) Write down the part programming for profile milling on 5 mm plate with depth of cut of 1 mm , revolution of spindle of 1200 rpm and feed of $20 \mathrm{~mm} / \mathrm{min}$. | 20 | $\begin{aligned} & \mathrm{CO} 4 \\ & \mathrm{CO} \end{aligned}$ |



