Name: Enrolm	nent No:				
	UNIVERSITY WITH A PORPOSE				
	UNIVERSITY OF PETROLEUM AND				
Drogre	End Semester Examination, De amme Name: B.Tech. Mechanical		V		
0	se Name : I. C. Engines	Semester .	v		
Time : 03 Hrs Max. Mar			100		
	se Code : MEAD3005		200		
	of page(s) : 3				
Instruct		Assume suitable data as required and	l menti	ion in	
<u>the solu</u>		<u>e.</u>			
	SECTION A				
	Attempt all questions.	Ma	rks	CO	
Q 1	Explain the important factors affecting the flame front propagation in SI Engines? Support your answer with diagrams if any.		5	C01	
Q 2	Explain ignition delay. Discuss any two factors to reduce the ignition delay.		5	C01	
Q 3	Explain the Zeldo-wich reaction related to formation of N			CO3	
Q 4	Compression ignition engine at rated condition develops 7.5 kW brake power. The				
	mechanical losses are 1.5 kW. The indicated thermal efficiency is 42%, air fuel ratio				
	is 22:1 and calorific value of the fuel is 43260 kJ/kg. Determine the brake specific fuel		5	CO2	
	consumption and brake thermal efficiency.				
	SECTION B				
	Attempt four question where internal choice is in Q 8.				
Q 5	Explain the stages of combustion in CI Engines with help of her	at release rate and p- θ diagram 10	0	CO2	
Q 6	Explain various principles of combustion chamber design? Wri				
	To achieve the objectives of the maximum power, maximum eff	iciency and no knocking, draw	_ <u>5</u>	CO1	
	the suitable diagram of combustion chamber and justify your and	nswer.	5	COI	
Q 7	Explain the working principle " <i>Three way catalytic conve</i>	erter" used in SI engines			
× ′	with construction details. Also discuss the characteristics and roles of catalyst used.		0	CO3	
	with construction details. This discuss the characteristics	and roles of catalyst used.	~		
Q 8	In an air standard diesel cycle, the compression ratio is 16 and	at the beginning of isentropic 1	0	CO2	
	compression, the temperature is 15 °C and pressure is 0.1 MPa	. Heat is added until the	5		
	temperature at the end of constant pressure process is 1500° C.	Calculate			
	(i) cut off ratio				
	(i) heat supplied per kg of air				
	(iii) Cycle efficiency				

	(iv) (the mean			
Į	(iv) 'the m.e.pAlso plot the p-v diagram by indicating the properties at salient points.			
1	Also plot the p-v diagram by	OR		
•	An engine working on Otto eve	le has a volume of 0.45 m^3 , pressure 1 bar and		
Q 8	 All engine working on Otto cycle has a volume of 0.45 hill, pressure 1 bar and temperature 30°C at the beginning of compression stroke. At the end of compression stroke the pressure is 11 bar. Heat of amount 210 kJ is added at constant volume. Determine: (i) Pressures, temperatures and volumes at salient points in the cycle. 			
	(ii) Percentage clearance		10	CO2
	(iii) Efficiency			
	(iv) Net work per cyc	le		
	(v) Mean effective p			
	There is choice in	SECTION-C Q 10/ Q 11. Do any one completely.		
Q 9		or Maruti car. The four stroke petrol engine has a		
Q,	displacement of 796cm ³ and development maximum power at 5500 rev/min. the volumetric			
	efficiency at this speed is assumed to be 70% and the air fuel ratio is 13.5:1. It is expected			
	that at peak power the theoretical air speed at the choke will be 105m/s. the coefficient of			
	discharge for the venturi assumed to be 0.85 and that of the main petrol jet is 0.66. An			
	-			
	allowance should be made for the emulsion tube, the diameter of which can be taken a 1/2.5			
	of the choke diameter. The petrol surface is 6 mm below the choke at this engine condition. Calculate the sizes of a suitable choke and main jet. The specific gravity of petrol is 0.74			CO3
	 (ii) Calculate for four cylinder, four stroke CI engine, the quantity of fuel to be injected 			
	per cylinder per cycle, if engine consumes 0.3 kg/ kWh . The power developed by			
	engine is 375 kW at a speed of 200 rpm. Specific gravity of fuel is 0.9		-	
	anging is 275 kW at a speed of 200 mm	m Specific gravity of fuelic 0.0	6	
	engine is 375 kW at a speed of 200 rpt	m. Specific gravity of fuel is 0.9	6	
Q. 10	(i) Following particulars refer	to full load test of a single cylinder petrol	6 14	CO4
Q. 10		to full load test of a single cylinder petrol		CO4
Q. 10	(i) Following particulars refer	to full load test of a single cylinder petrol oke cycle;		CO4
Q. 10	(i) Following particulars refer engine working on four stre	to full load test of a single cylinder petrol oke cycle;		CO4
Q. 10	(i) Following particulars refer engine working on four stre <i>Cylinder diameter</i>	to full load test of a single cylinder petrol oke cycle; = 110mm		CO4
Q. 10	(i) Following particulars refer engine working on four stre <i>Cylinder diameter</i> <i>Stroke</i>	to full load test of a single cylinder petrol oke cycle; = 110mm = 120mm		CO4
Q. 10	(i) Following particulars refer engine working on four stro Cylinder diameter Stroke Brake power	to full load test of a single cylinder petrol oke cycle; = $110mm$ = $120mm$ = $118 kW$		CO4
Q. 10	(i) Following particulars refer engine working on four stro Cylinder diameter Stroke Brake power Torque Speed Oil consumption	to full load test of a single cylinder petrol oke cycle; = $110mm$ = $120mm$ = $118 kW$ = $410 N-m$		CO4
Q. 10	(i) Following particulars refer engine working on four stre Cylinder diameter Stroke Brake power Torque Speed	to full load test of a single cylinder petrol oke cycle; = $110mm$ = $120mm$ = $118 kW$ = $410 N-m$ = $2500 rpm$		CO4
Q. 10	(i) Following particulars refer engine working on four structure Cylinder diameter Stroke Brake power Torque Speed Oil consumption Calorific value of fuel Cooling water flow rate	to full load test of a single cylinder petrol oke cycle; = $110mm$ = $120mm$ = $118 kW$ = $410 N-m$ = $2500 rpm$ = $40 Kg/h$ = $41150 kJ/kg$ = $2800 kg/h$		CO4
Q. 10	(i) Following particulars refer engine working on four stre Cylinder diameter Stroke Brake power Torque Speed Oil consumption Calorific value of fuel Cooling water flow rate Fuel Air ratio	to full load test of a single cylinder petrol oke cycle; = $110mm$ = $120mm$ = $118 kW$ = $410 N-m$ = $2500 rpm$ = $40 Kg/h$ = $41150 kJ/kg$ = $2800 kg/h$ = $1:16$		CO4
Q. 10	(i) Following particulars referengine working on four struct Cylinder diameter Stroke Brake power Torque Speed Oil consumption Calorific value of fuel Cooling water flow rate Fuel Air ratio Hydrogen in fuel by mass	to full load test of a single cylinder petrol boke cycle; = 110mm $= 120mm$ $= 118 kW$ $= 410 N-m$ $= 2500 rpm$ $= 40 Kg/h$ $= 41150 kJ/kg$ $= 2800 kg/h$ $= 1:16$ $= 15%$		CO4
Q. 10	(i) Following particulars referengine working on four struct Cylinder diameter Stroke Brake power Torque Speed Oil consumption Calorific value of fuel Cooling water flow rate Fuel Air ratio Hydrogen in fuel by mass Rise in cooling water temperer	to full load test of a single cylinder petrol oke cycle; = 110mm = 120mm = 118 kW = 410 N-m = 2500 rpm = 40 Kg/h = 41150 kJ/kg = 2800 kg/h = 1:16 =15% ature = 50° C		CO4
Q. 10	(i) Following particulars referengine working on four structure of engine working on four structure of exhaust gases.	to full load test of a single cylinder petrol oke cycle; = 110mm = 120mm = 118 kW = 410 N-m = 2500 rpm = 40 Kg/h = 41150 kJ/kg = 2800 kg/h = 1:16 =15% ature = 50° C s = 400° C		CO4
Q. 10	(i) Following particulars referengine working on four struct Cylinder diameter Stroke Brake power Torque Speed Oil consumption Calorific value of fuel Cooling water flow rate Fuel Air ratio Hydrogen in fuel by mass Rise in cooling water temperature Temperature of exhaust gase Room temperature	to full load test of a single cylinder petrol oke cycle; = 110mm = 120mm = 118 kW = 410 N-m = 2500 rpm = 40 Kg/h = 41150 kJ/kg = 2800 kg/h = 1:16 =15% ature = 50° C s = 400° C = 20° C		CO4
Q. 10	(i) Following particulars referengine working on four structure of engine working on four structure of exhaust gases.	to full load test of a single cylinder petrol oke cycle; = 110mm = 120mm = 118 kW = 410 N-m = 2500 rpm = 40 Kg/h = 41150 kJ/kg = 2800 kg/h = 1:16 =15% ature = 50° C s = 400° C = 20° C		CO4

	Draw up the heat balance sheet for t Support with the suitable diagram.	the test in terms of KW & % of heat supplied.	14	CO4
	Specific heat of water Specific heat of water vapour	= 4.18 kJ/kg-K = 2.1 kJ/kg-K		
	Mean specific heat of exhaust gas	= 1 kJ/kg-K		
	Room temperature	$= 30^{\circ} C$		
	Temperature of exhaust gases	$= 430^{\circ} C$		
	Rise in cooling water temperature	$=45^{\circ}C$		
	Air used per kg of fuel	$= 30 \ kg$		
	Cooling water flow rate	$= 4.5 \ kg/min$		
	Calorific value of fuel	=45 MJ/kg		
	Oil consumption	= 4 Kg/h		
	Hydrogen in fuel by mass	= 14%		
	Speed	= 250 rpm		
	Torque	= 410 N-m		
	Indicated Mean effective pressure	= 6 bar		
	Stroke	$= 40 \ cm$		
	obtained: <i>Cylinder diameter</i>	$= 20 \ cm$		
	(ii) During the trial of a single cylinder, four stroke oil engine, the following results were			
	grams of gasoline per kWh.			
	efficiency if the calorific value of the fuel is 43 MJ/kg and the engine uses 360		6	CO4
	torque when one cylinder was cut is 110 Nm. Find the indicated thermal			
Q 11	(i) A four-cylinder engine running at 1200 rpm delivers 20 kW. The average			
	efficiency.			
	Determine the brake specific fuel consumption and brake thermal			
	power. The mechanical losses are 1.5 kW. The indicated thermal efficiency is 42%, air fuel ratio is 22:1 and calorific value of the fuel is 43260 kJ/kg.		6	CO4
	 Support with the suitable diagram. Also calculate the brake thermal efficiency and volumetric efficiency of the engine. (ii) Compression ignition engine at rated condition develops 7.5 kW brake 			
	Draw up the heat balance sheet for the test in terms of KW & % of heat supplied.			
	Specific heat of water vapour	= 1.838 kJ/kg-K		