Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES END Semester Examination, DECEMBER 2019

Program: B-Tech GSE & GIE	Semester: V
Course: Rock Mechanics and Geotechnical Engineering	Time 03 hrs.
Course Code: PEGS-3003	Max. Marks: 100
Instructions: All the questions of section A & B are compulsory. In Se	ection C attempt any two questions.
Wherever necessary do with neat sketches.	
Number of Pages:03	
SECTION A	

S. No.		Marks	СО
Q 1	 Write a note on the following terms: a) Shotcrete b) Vertisol c) ANFO and VOD d) Clogging e) Pedalfer 	10	CO1
Q.2	 b) Fedaliei Differentiate between the following terms: i) Foliation and Lineation ii) Saturated density and submerge density iii) Grittiness and Toughness texture iv) Reinforced earth wall & Crib wall v) qns and qs 	10	CO2
	SECTION B		
Q .3	 Fill in the blanks with suitable answer: a) A state of 'soil liquefaction' occurs when theof soil is reduced to essentially zero. b) forms when water saturates an area of loose sand and the ordinary sand is agitated. c) An dam is constructed in a low spot or "saddle" through which the reservoir to permit higher water elevation. d) dams were timber crib dams used to help float logs downstream in the late 19th and early 20th centuries. e) When such an emergency bank is added on top of an existing levee it is known as a f) is concrete conveyed through a hose and pneumatically projected at high velocity onto a surface, as a construction technique. 	10	CO3

	 g) After a threshold region the rock begins to show deformation under confining pressure h) The are form as result of extensional stress acting on brittle rock. i) is the ratio of uniaxial compressive (tensile) stress to the resultant strain. j) The Poisson's ratio of an material is different in each direction (x, y and z). 		
Q. 4	Define liquefaction? Discus in brief causes, hazards and prevention of Liquefaction	10	CO4
Q.5	Discuss and Justify the role of following term analysis in geotechnical Engineering: a)Compressive strength b) Fatigue strength c) yield strength d) Impact strength	10	CO5
Q.6	 i) Determine the vertical stress increases in a point at a depth of 6m below the center of the invert of a newly built spread footing, 3m breadth and 4m length placed on the ground surface carrying a columnar axial load of N=2000 KN and I₄=0.0645 ii)The soil sample collected from foundation site, the specification of soil is as follows; the moist unit weight of a soil is 16.5 KN/m³, moisture content (w) is 15% and specific gravity (Gs) is 2.7 g/cc. Determine the Dry unit weight, porosity, degree of saturation and the mass of water in kg/m³ that must be add to reach full saturation. SECTION-C Attempt any two question (2 X 20) = 40 Marks 	6+4	CO2 & CO3
Q .7	 a)	5+7+8	CO4, CO5, CO6

	R/Z	Corner	Centre	Interm				
	0.1	0.067	0.064	0.100				
	0.2	0.133	0.128	0.200				
	0.3	0.200	0.192	0.300				
	0.4	0.267	0.256	0.400				
	0.5	0.333	0.32	0.500				
	0.6	0.400	0.384	0.600				
	0.7	0.467	0.448	0.700				
	0.8	0.533	0.512	0.800				
	0.9	0.600	0.576	0.900				
	1.0	0.667	0.64	1.000				
	1.25	1.00	0.82	1.023				
	1.50	1.23	0.95	1.035				
	1.75	1.45	1.00	1.052				
	2.0	1.76	1.07	1.073				
	i) RSI	i) RSR ii) RMR iii) GSI iv) Q.System v) RQD			20	CO		
	a) Describe controlling		s types of I	Blasting a	nd their effect in exca	avation site and		
.9		b) The proposed levee is to be build along the side of a river to protect a nearby town						
.9	b) The prop	posed levee is to	be build al	ong the s	de of a river to protec	et a nearby town		
.9				-	de of a river to protec levee is sandy rich w			
.9	from the fl the shear s	ooding. If the n tress at point A	atural soil l is 500lb/ft. ²	below the ² Comp	levee is sandy rich w the the factor of safety	with $\mathbf{\phi} = 34^\circ$, and y against sliding		
9	from the fl the shear s at point A.	ooding. If the n tress at point A Assume point	atural soil l is 500lb/ft. A is nearly	below the ² Comp horizonta	levee is sandy rich w the the factor of safety l with C'=0, If the ga	with $\phi = 34^\circ$, and y against sliding y against sliding	10+6+	CO:
.9	from the fl the shear s at point A.	ooding. If the n tress at point A Assume point	atural soil l is 500lb/ft. A is nearly	below the ² Comp horizonta	levee is sandy rich w the the factor of safety	with $\phi = 34^\circ$, and y against sliding y against sliding	10+6+ 4	CO: CO