

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, Dec 2019

Course: Data Communication and Networking

Program: B.Tech ECE
Course Code: ECEG 3004

Semester: V
Time 03 hrs.

Max. Marks: 100

	CECIPION			
S. No.	SECTION A	Marks	CO	
Q 1	Draw and explain the structure of mesh topology with 8 nodes. How many full			
	duplex links are possible in an n node mesh network? Also write advantages and	5	CO2	
	disadvantages of mesh networks.		002	
Q 2	Differentiate OSI model and TCP/IP model. Briefly explain the protocols supported	_	001	
	by TCP/IP in network layer and transport layer.	5	CO1	
Q 3	Why protocols and standards are needed in data communication? Differentiate two	5	CO1	
0.4	different categories of data communication standards. Define the type (unicast, multicast, broadcast) of the following destination addresses:			
Q 4	a) 4A:30:10:21:10:1A			
	b) 47:20:1B:2E:08:EE	5	CO ₂	
	c) FF:FF:FF:FF			
	SECTION B			
Q 5	Design a bidirectional algorithm for the Go-Back-N ARQ Protocol using	10	CO3	
	piggybacking. Note that both parties need to use the same algorithm.	10		
Q 6	Draw a switched network and explain the necessity of switching within a network.	10 CO2		
Q 7	Define, discuss and compare the format of Internet Protocols IPV4 and IPV6?	10 CO3		
Q 8	This problem shows a special case in checksum handling. A sender has two data items to send: Ox4567 and OxBA98. What is the value of the checksum?	10	CO3	
		I I		
	SECTION-C			
Q 9 A	Suppose the length of a lOBase5 (thick Ethernet) cable is 2500 m. If the speed of			
	propagation in a thick coaxial cable is 200,000,000 m/s, how long does it take for a	10	CO2	
	bit to travel from the beginning to the end of the network? Assume there is 10µs		002	
	delay in the equipment.			
Q 9 B	Assume that a voice channel occupies a bandwidth of 4 kHz. We need to combine			
	three voice channels into a link with a bandwidth of 12 kHz, from 20 to 32 kHz.			

	bands.		
Q 10 A	A pure ALOHA network transmits 200-bit frames on a shared channel of 200 kbps. What is the throughput if the system (all stations together) produces: a) 1000 frames per second b) 500 frames per second c) 250 frames per second	10	CO3
Q 10 B	Create the routing tables for the Router R1 and R2 as shown below: Organization 1	10	CO3