Name:							
Enrolment No:		UNIVERSITY WITH A PURPOSE					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES							
End Semester Examination, December 2019							
	Course: Mass Transfer-ISemester: VProgram: B.Tech (CE+RP)Time 03 hrs.						
Course Code: CHEG3003 Max. Marks:			100				
	tions: In case of data missing make neces		100				
S. No.	SECTION A (4X5=20)		Marks	CO			
Q 1	For the decomposition of N_2O_5 (A) as per	the reaction $N_2 O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$. If O_2 (B)	5 M	CO1			
	diffuses back then calculate the value of $N_A/(N_A+N_B)$		5 11				
Q 2	Define and give significance of i) Schmidt number and ii) Stanton number.		5 M	CO2			
Q 3	Derive operating line for Stripping section	of distillation column with neat figure.	5 M	CO5			
Q 4	Define Flooding and weeping		5 M	CO4			
SECTION B (4X10=40)							
		er all the questions)		1			
Q 5	Explain the concept of Film theory, Penet	tration theory and Surface renewal theory and	10 M	CO2			
	state its assumptions.		10 101	02			
Q 6	In a mass transfer apparatus operating a	t 1 atmosphere the individual mass transfer					
	coefficient have the following values k_x	=22 kg mol/m ² .h, k_y =1.07 kg mol/m ² .h. The					
	equilibrium compositions of the gaseous a	and liquid phases are characterizes by Henry's	10 M	CO3			
	law p*= $0.08x10^6X$ mm Hg. Determine i) the overall mass transfer coefficients, ii) how					
	many times the diffusion resistance of liqu	id phase differs from that of gas phase?					
Q 7	With neat schematic diagram, explain the v	vorking principle of bubble cap column for gas-					
	liquid contacting.		10 M	CO4			
Q 8		Also, derive Raleigh's equation for binary	10 M	CO5			
	mixture.	ON C (2X20=40M)					
		ory. Answer <u>any one</u> in question <u>No. 9</u>					
Q 9	Develop an expression for the flux of spec	ies 'A' with respective to a stationary observer					
	for the case of multi component diffusion.	1	20 M	CO1			
		DR	20 IVI				
		~					

	Ammonia is diffusing through an inert air film 2 mm thick at a temperature of 20 °C and a pressure of 1 atm. The concentration of ammonia is 10 mole% on one side of the film and zero on the other side. D_{AB} at 0 °C and 1 atm is 0.198 cm ² /s. Estimate the % change of flux if the temperature is 20 °C and pressure is raised to 5 atm.		
Q 10	A mixture of benzene and toluene containing 38 mole% of benzene is to be separated to give a product of 90 mole% benzene at the top, and the bottom product with 4 mole% benzene. The feed enters the column at its boiling point and vapor leaving the column is simply condensed and provide product and reflux. It is proposed to operate the unit with a reflux ratio of 3.0. Locate the feed plate and number of plates. The vapor pressures of pure benzene and toluene are 1460 and 584 mm Hg respectively. Total pressure is 750 mm Hg.	20 M	CO5