Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2019

Programme Name:B.Tech. CERPSemester: VCourse Name:Chemical Reaction Engineering ITime: 03 hrsCourse Code:CHCE3004Max. Marks: 100Nos. of page(s): 02: 02: 02Instructions:(i) This question paper has three sections- A, B and C. All questions of each section are compulsory.

(iii) Attempt all the sub-parts of a question together.

S. No. CO Marks Q 1 The half-life periods for decomposition of PH₃ for different initial pressures are given below Find out the order of reaction. 5 **CO5** P.torr 707 79 37.5 84 84 t1/2, min 84 Define space time and space velocity. Q 2 5 **CO4** 03 The pyrolysis of ethane proceeds with an activation energy of about 300 KJ/mol. How 5 **CO5** much faster is the decomposition at 650°C than 500°C. Q 4 Substance 'A' in liquid reacts to produce R and S as follows: $A \rightarrow R$ (First Order) $A \rightarrow S$ (First Order) 5 **CO3** A feed ($C_{Ao} = 2$, $C_{Ro} = 0$, $C_{So} = 0$) enters in two mixed flow reactors in series ($\tau_1 = 2.5$ min, $\tau_2 = 5$ min) knowing the composition in the first reactor (C_{A1}= 0.8, C_{R1}= 0.8, C_{S1}= 0.4). find the composition leaving the second reactor. **SECTION B (60 Marks)** Q 5 The irreversible gas phase reaction $A+B \rightarrow C$ is to be carried out at 10 atm and 227 oC. In a reactor chain consist of A MFR and PFR. It is required to process 1 lt of feed per second. The feed contains 41 mole % A, 41 mole % B and 18 mole % inerts by volume. The rate of reaction in mol/(1.min) as a function of conversion is as follows: -r_A, mol/lit 0.2 0.0167 0.00488 0.00286 0.00204 12 **CO4** X_A 0 0.1 0.4 0.7 0.9 Calculate size of MFR and PFR required to achieve X_{A1} = 0.47 as a intermediate conversion (from reactor 1) and $X_{A2}=0.8$ as final conversion. Suggest best arrangement.

SECTION A (20 Marks)

Q 6	The reaction between H ₂ (gas) and I(gas) to produce HI(gas) proceeds with a rate $\frac{1}{2} \frac{d[HI]}{dt} = K[H_2] [I]^2$ Suggest a two-step mechanism which is consistent with this rate.					12	CO 5
Q 7	Derive an integrated rate expression for third order reaction of the type $2A + B \rightarrow$ products.					12	CO 2
Q 8	The decomposition of pure NH3 on tungsten wire at 856°C gave the following results:						
	Total Pressure (mm of Hg)	228	250	273	318	12	CO 5
	Time (Sec)	200	400	600	1000		
	Determine the order of the reaction and calculate its rate constant in terms of moles, litres and seconds.						
Q 9	Find the first order reaction rate constant k, (referred to A) of the gas reaction $2A \rightarrow P$, if by keeping the pressure constant, the volume of the reaction mixture, starting with 80 mole% A and 20 mole % inerts, decreases by 20 % in 3 min.					12	C01
			SECTION	-C (20 Marks)			
Q 10	 (a). Derive the design equation of ideal plug flow reactor from fundamentals, clearly stating the assumptions made. (b). Substance 'A' reacts according to second order kinetics and conversion is 95% from a single flow reactor. We buy a second unit identical to the first for the same degree of conversion by how much is the capacity increased if we operate these two units in series: (i) The reactors are both Plug Flow. 					20	CO4
	(ii) the reactors are both mixed flow.						