

	Sy h Fig. 2		
Q8	Derive the Bredt Batho torsion formula for a thin walled closed section. Draw the required skecthes clearly. OR Diffrenece between symmetric and unsymmetric beam. Derive the formula to obtain bending stress in unsymmteric beam.	10	$\mathrm{CO3}$
Q9.	For a T- section shown ig fig. 3. Detrime the maximum bending stress value and its position, if the beam is subjeted to moment, M_{x} and My of magnitude 100 and 120 KN mm respectively. Also find out the inclination of neutral axis w.r.t to x - axis. Fig. 3	10	CO 3
	SECTION-C		
Q10	Determine the shear flow distribution of the idealized fuselage section shown in Fig. 4. The fuselage is subjected to a shear and torsion load of 120 KN and 100 KN mm respectively at point 1 , The radius of the fuselage is 600 mm . Booms are equally place over surface of fuselage and area of each boom $==300 \mathrm{~mm}^{2}$	20	$\mathrm{CO4}$

