Name: Enrolment No:			
Course: Aerodynamics II (ASEG 3003) Semester: V Programme: B.Tech ASE and B.Tech ASE+AVE Time: 03 hrs. Max. Marks: 100 Instructions: Assume missing data, if any, appropriately. Use sketches to justify your answer wherever required.			
SECTION A			
S. No.		Marks	CO
Q 1	Boeing 767 uses Supercritical airfoil initially developed by R. Whitcomb. Define its significance over conventional NACA airfoils.	04	$\mathrm{CO4}$
Q 2	A monoplane weighing 84685 N has elliptic wing of span 16 m . When it flies at 328 km / h at sea level, determine the circulation around a section halfway between the wing root and the wing tip.	04	$\mathrm{CO3}$
Q 3	Explain briefly about Whitcomb's Area Rule for fuselage shape.	04	CO4
Q 4	Consider a thin flat plate at 3-degree angle of attack. Calculate the: (a) lift coefficient, (b) moment coefficient about leading edge, (c) moment coefficient about the quarter chord point.	04	$\mathrm{CO2}$
Q 5	Beechcraft model 18 the twin jet transport aircraft, for this airplane the zero-lift angle of attack is -2.1 degree, the lift slope of the airfoil section is 0.1 per degree, the lift efficiency factor $\tau=0.06$, and the wing aspect ratio is 12 . Airplane is cruising at a lift coefficient equal of 0.27 . Calculate the angle of attack of airplane?	04	$\mathrm{CO3}$
SECTION B			
Q 6	Transform a circle of radius a with the centre in the z-plane located on the x-axis, to an ellipse using Kutta-Joukowski transformation function: $\zeta=\mathrm{z}+\frac{b^{2}}{z}$ Also, find an expression for fineness ratio of the transformed ellipse.	10	$\mathrm{CO1}$

Q 7	Derive the relation for lift coefficient and lift slope for a cambered airfoil based on classical thin airfoil theory.	10	CO2
Q 8	The measured lift slope for the NACA 24012 airfoil is 0.1132 degree $^{-1}$, and $\alpha_{\mathrm{L}=0}=-1.4$ degree. Consider a finite wing using this airfoil, with $\mathrm{AR}=10$ and taper ratio $=0.9$. Assume that $\delta=\tau$. Calculate the lift and induced drag coefficients for this wing at geometric angle of attack $=7$ degree. OR Explain how the finite wing lift curve slope differs from that of an airfoil. Thus, derive a relation between the lift curve slope of a finite wing and airfoil.	10	CO3
Q 9	Explain Prandtl-Glauert Compressibility Correction. At a given point on the surface of an airfoil, the pressure coefficient is -0.3 at very low speeds. If the freestream Mach number is 0.6 , calculate C_{p} at this point.	10	CO4
SECTION-C			
Q 10	Explain the term conformal transformation. Apply the transformation formulae to transform a circle into a symmetrical airfoil. OR Analyze the complex potential function (w) for the following flows: (i) Uniform flow (U) in the direction of negative $O x$ axis. (ii) Point vortex with circulation (K) at the origin. (iii) Doublet of strength μ, at the origin in the direction of positive $O x$ axis.	20	CO1
Q 11	Applying Prandtl-Glauert Compressibility correction, find out the value centre of pressure Cp , coefficient of lift Cl and coefficient of moment Cm for the airfoil shown in below figure,	20	CO4

\qquad

