Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2019

Course: Aerodynamics II (ASEG 3003)

Semester: V

Programme: B.Tech ASE and B.Tech ASE+AVE

Time: 03 hrs. Max. Marks: 100

Instructions: Assume missing data, if any, appropriately.

Use sketches to justify your answer wherever required.

SECTION A

S. No.		Marks	CO
Q 1	Boeing 767 uses Supercritical airfoil initially developed by R. Whitcomb. Define its significance over conventional NACA airfoils.	04	CO4
Q 2	A monoplane weighing 84685 N has elliptic wing of span 16 m. When it flies at 328 km/h at sea level, determine the circulation around a section halfway between the wing root and the wing tip.	04	CO3
Q 3	Explain briefly about Whitcomb's Area Rule for fuselage shape.	04	CO4
Q 4	Consider a thin flat plate at 3-degree angle of attack. Calculate the: (a) lift coefficient, (b) moment coefficient about leading edge, (c) moment coefficient about the quarter chord point.	04	CO2
Q 5	Beechcraft model 18 the twin jet transport aircraft, for this airplane the zero-lift angle of attack is -2.1 degree, the lift slope of the airfoil section is 0.1 per degree, the lift efficiency factor $\tau = 0.06$, and the wing aspect ratio is 12. Airplane is cruising at a lift coefficient equal of 0.27. Calculate the angle of attack of airplane?	04	CO3
	SECTION B		
Q 6	Transform a circle of radius a with the centre in the z -plane located on the x -axis, to an ellipse using Kutta–Joukowski transformation function: $\zeta = z + \frac{b^2}{z}$ Also, find an expression for fineness ratio of the transformed ellipse.	10	CO1

Q 7	Derive the relation for lift coefficient and lift slope for a cambered airfoil based on classical thin airfoil theory.	10	CO2
Q 8	The measured lift slope for the NACA 24012 airfoil is 0.1132 degree ⁻¹ , and $\alpha_{L=0}$ = -1.4		
	degree. Consider a finite wing using this airfoil, with AR=10 and taper ratio = 0.9.		
	Assume that $\delta = \tau$. Calculate the lift and induced drag coefficients for this wing at	10	CO3
	geometric angle of attack = 7 degree.		
	OR		
	Explain how the finite wing lift curve slope differs from that of an airfoil. Thus,		
	derive a relation between the lift curve slope of a finite wing and airfoil.		
Q 9	Explain Prandtl-Glauert Compressibility Correction. At a given point on the surface	10	CO4
	of an airfoil, the pressure coefficient is -0.3 at very low speeds. If the freestream		
	Mach number is 0.6, calculate C _p at this point.	10	
	SECTION-C		
Q 10	Explain the term conformal transformation. Apply the transformation formulae to		
	transform a circle into a symmetrical airfoil.	20	CO1
	OR		
	Analyze the complex potential function (w) for the following flows:		
	(i) Uniform flow (U) in the direction of negative Ox axis.		
	(ii) Point vortex with circulation (<i>K</i>) at the origin.		
	(iii) Doublet of strength μ , at the origin in the direction of positive Ox axis.		
Q 11	Applying Prandtl-Glauert Compressibility correction, find out the value centre of		
	pressure Cp, coefficient of lift Cl and coefficient of moment Cm for the airfoil shown	20	CO4
	in below figure,		

•••••