Enrolment	No:

Name:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course:	Reservoir Engineering I
Program:	BT-APEU
Time: 03 hrs.	

Semester: V

Max. Marks: 100

Instructions:

SECTION A S. No. Marks CO Q 1 Explain the factors that must be considered as possible sources of error in 4 **CO1** determining reservoir permeability in laboratory and how can it be avoided. Explain the difference between absolute permeability and effective permeability Q 2 4 **CO1** Q 3 Explain different methods of estimation of reserve with expected possible errors in 4 **CO6** each methods of estimation. Define the different types of flow regimes that may exist in a reservoir to describe **O**4 4 **CO4** the fluid flow behavior. Q 5 Explain the capillary hysteresis 4 CO₂ **SECTION B** Q 6 A laboratory capillary pressure test was conducted on a core sample taken from a layer that is characterized by an absolute permeability of 80 md and a porosity of 16%. The capillary pressure saturation data are given as follows. S., Per psi 1.0 0.50 0.80.6010 CO₂ 0.6 0.75 0.4 1.05 0.2 1.75 The interfacial tension is measured at 50 dynes/cm. Further reservoir engineering analysis indicated that the reservoir is better described at a porosity value of 19% and an absolute permeability 120 md. Generate the capillary pressure data for this reservoir. Q 7 A gas reservoir with an area of 3000 acres and thickness 30 ft has porosity 0.15 and CO6 10 water saturation 20%. The initial pressure was observed 2600 psi and reservoir

	temperature was 150 °F. The z factors measured at 2600, 1000 and 400 psi was 0.82,		
	0.88 and 0.92 respectively.		
	Calculate cumulative gas production at above pressures and recovery factor at 1000		
	psi		
Q 8	State the primary natural drive indices encountered in a typical petroleum reservoir		005
	with explaining the expected production and pressure profile during the producing	10	CO5
	life of reservoir under different driving indices.		
Q 9	Derive equations for determining the following parameters of a natural gas		
	Apparent molecular weight		
	• Specific gravity		
	• Density		
	Gas formation volume factor, Bg		
	Or	10	CO3
	An ideal gas mixture has a density of 1.92 lb/ft3 at 500 psia and 100°F. Calculate		
	a. Apparent molecular weight of the gas mixture.		
	b. Gas density at 2,000 psia and 150°F		
	c. Specific volume at 2,000 psia and 150°F		
	SECTION-C		
Q 10	A. Derive an expression for the steady state inflow of slightly compressible fluid		
	into a vertical well assuming that only single fluid phase is flowing under		
	isothermal condition.		
	B. A 0.72 specific gravity gas is flowing in a linear reservoir system at 150°F.		
	The upstream and downstream pressures are 2000 and 1800 psi, respectively.	20	CO4
	The system has the following properties:		
	L = 2000 ft, Width = 300 ft, $h = 15$ ft, $k = 40$ md $\phi = 15\%$, z factor = 0.78		
	$\mu g = 0.0173$		
	Calculate the gas flow rate.		
Q 11	Describe the production decline analysis and its controlling factors. Illustrate in		
	details all types of rate decline behavior and its importance in petroleum industry.		
	Or		
	A well with an exponential decline of 1.5 %/month currently produces at 300	20	CO6
	STB/day. calculate	-0	200
	• Its production rate in 2 years		
	 Its cumulative production in those 2 years 		
	 Total cumulative production from the end of year 20 to the end of year 21 		
	• Its production rate in 2 years if decline is hyperbolic and $b = 0.6$		